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Preface 
 
Open-ended embodiment of robot’s social intelligence will be the key of life-long development 
and learning capabilities of the robots in the human centered environment. This will facilitate the 
robot to adapt and enhance itself and exhibit socially accepted and socially expected behaviors. 
Therefore, the heart of the workshop lies in the concept of bottom up development of socially 
intelligent robots. For this, we need to identify the basic cognitive and behavioral blocks, which 
could facilitate the robot to develop more complex socio-cognitive intelligence. Hence, this first 
edition of the workshop focuses on some of such basic blocks: reasoning about human, 
perspective taking, affordance, effort, social signal and their applications.  
 
The International Workshop on Developmental Social Robotics (DevSoR): Reasoning about 
Human, Perspective, Affordances and Effort for Socially Situated Robots, held during IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS) 2013, on November 7, 2013 
at Tokyo, Japan. The full day workshop started by an introduction by Dr. Amit Kumar Pandey, 
on the core idea behind the Developmental Social Robotics and the motivation behind the 
workshop. This was followed by 4 dynamic sessions, Affordance based Reasoning (chaired by 
Prof. Kazuhiko Kawamura), Social Interaction based Reasoning and Learning I (chaired by Dr. 
Rachid Alami), Social Interaction based Reasoning and Learning II (chaired by Prof. Joachim 
Hertzberg) and Modeling Social Intelligence (chaired by Prof. Mohamed Chetouani). The 
sessions, in addition to the paper presentations, featured five distinguished invited talks, from 
Prof. Ashutosh Saxena (Cornell University, USA), Prof. Sinan Kalkan (Middle East Technical 
University, Turkey), Prof. Mohamed Chetouani (Institute for Intelligent Systems and Robotics 
(ISIR), Paris, France), Prof. Angelo Cangelosi (University of Plymouth, UK) and Prof. Kazuhiko 
Kawamura (Vanderbilt University, USA). 
 
At the end of the technical presentations, a stimulating panel discussion was organized, titled 
“Developing Socially Intelligent Robot: What are the immediate challenges?”, which was 
moderated by Dr. Rachid Alami and the other members of the panel were Prof. Angelo Cangelosi, 
Prof. Mohamed Chetouani and Prof. Kazuhiko Kawamura. The panel discussion with active 
participation from the audience successfully identified some important aspects of immediate 
focus for developing socially intelligent robotics. It has been agreed that as now we have ways to 
analyze and compute various affordances, therefore we should now focus more on the use of 
affordance in various dimensions of social intelligence. Another aspect, which emerged was the 
need of design metrics for evaluating HRI, social interaction and development. Coming up with 
approaches to accelerate the ‘developmental’ process was another concern. To achieve this, it 
was suggested to equip the robot already with the necessary basic components of socio-cognitive 
development, instead of letting them grow as day one child, as well as to focus on sharing and 
transferring the learning and skills among robots (these in fact are the basic motivation behind 
this workshop). Addressing the complexity of lexical analysis for verbal communication and not 
forgetting the aspect of safety was among other interesting points.       
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Regarding the papers contributions, the workshop successfully attracted contributions from 
diverse domains on some of the basic aspects of social development. Affordance emerged as one 
of the most contributing aspects. Perspective taking, social interaction (verbal and non-verbal) 
based social learning, and modeling aspects of cognition and intention were other interesting 
domains of contributions. This proceeding includes all the accepted contributions presented at 
the workshop. The paper by Awaad et al. (presented by Iman Awaad) exploits the notion of 
functional affordances with conceptual similarity for substituting the right objects, during the 
planning to achieve the task. Whereas, the paper by Ugur et al. (presented by Emre Ugur) gets 
inspiration from infant development and uses the notion of motionese to identify the important 
steps and the boundaries for learning sub-goals of a task from demonstrations. The paper by Tan 
et al. (presented by Kazuhiko Kawamura) integrates the aspects of control, cognition and 
intention for the robot to adapt its behavior during social interaction. Whereas, the paper by 
Grigore et al. (presented by Elena Corina Grigore) shows the importance of socially assistive 
robotics (SAR) approach to teach children through social interaction. The paper by Baddoura et 
al. (presented by Gentiane Venture) presents a study about the people’s first encounters with the 
robot, and how do those shape the sociability of the Human-Robot Interaction (HRI). The paper 
by Rousseau et al. (presented by Salvatore Anzalone) explores the notion of joint attention 
through perspective taking mechanism during social interaction to learn objects’ names. Finally, 
the paper by Daglarli et al. (presented by Gökhan İnce) presents some of the basic constructs 
inspired by brain architecture to model socio-cognitive aspects of HRI.   
 
We would like to thank all the participants, contributors, program committee members, the 
reviewers, the invited speakers and the panelists, to shape the workshop, by bringing an 
interesting program, excellent technical presentations and stimulating discussion. All these have 
paved the way for the successive editions of the workshop, by identifying the challenges we 
should focus in the development of socially intelligent robots. We would like to thank IROS 
2013 organizing committee and IROS 2013 workshop chairs Fumihito Arai, Nagoya University 
(Japan), George Lee, Purdue University (USA), Antonio Bicchi, University of Pisa (EU) for 
providing us this great platform and assisting us in successful organization of the workshop. We 
would like also to express our thanks and gratitude to the local organizing team to facilitate 
smooth flow during the entire workshop.  
 
We hope to see you all in the next edition of the DevSoR workshop, soon. 
 
IROS-DevSoR 2013 Organizing Committee 
November 2013 
 
Amit Kumar Pandey, LAAS-CNRS, Toulouse, France   
Rachid Alami, LAAS-CNRS, Toulouse, France  
Alessandro Saffiotti, AASS, Örebro University, Sweden  
Peter Ford Dominey, INSERM, France  
Kazuhiko Kawamura, Vanderbilt University, USA  
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Socializing Robots: The Role of Functional Affordances*

Iman Awaad1, Gerhard K. Kraetzschmar1 and Joachim Hertzberg2

Abstract— Just as humans behave according to the social
norms of their groups, autonomous systems that become part
of these groups also need to behave in socially-expected and
accepted ways. For humans these social norms are learned
through interaction with members of the group. In this work,
we propose that the functional affordances of objects, what
objects are meant to be used for, provide us with a starting
point for the socialization of such agents. We model these
functional affordances in Description Logics (DL) and show
how this enables the socially-expected human behavior of
substituting objects as needed to achieve a goal. In addition, we
propose to combine these affordances with conceptual similarity
and proximity in order to make more complex substitutions,
which are socially acceptable in their given context. Finally,
we describe how their use would allow the agent to take
advantage of opportunities and how they are modified and
extended through interaction with humans.

I. INTRODUCTION

Domestic service robots are expected to carry out tasks
around the house, such as cleaning, fetching objects, serving
drinks and so on. Their success has traditionally been based
on their ability to understand commands and accomplish
the given tasks. Such agents are typically mobile manipu-
lators with capabilities at varying levels of complexity, such
as perception, mapping, manipulation, navigation, dialog
management and task planning. The integration of these
capabilities to form an architecture which enables a flexible
and robust agent remains a focus of much research.

An agent which is also capable of learning, be it from
demonstration, by experimentation, or by querying external
knowledge bases, is no longer simply desirable, but necessary
for life-long learning. We argue, that in addition to this,
domestic service robots need the capability to acquire, as-
similate and apply the social norms of the group with which
they interact so that they can behave in socially-expected
and accepted ways. Humans cohabiting the environment
would gain from the more natural human-robot interaction
which would result, and the agents would also gain from the
flexibility that these norms provide humans when performing
their everyday tasks.

*Iman Awaad gratefully acknowledges financial support provided by a
PhD scholarship from the Graduate Institute of Bonn-Rhein-Sieg University.
The work of Joachim Hertzberg reported here is supported by the RACE
project, grant agreement no. 287752, funded by the EC Seventh Framework
Programme theme FP7-ICT-2011-7.

1Iman Awaad and Gerhard K. Kraetzschmar are with the Department of
Computer Science, Bonn-Rhein-Sieg University of Applied Sciences and B-
IT Center, 53757 Sankt Augustin, Germany iman.awaad@h-brs.de,
gerhard.kraetzschmar@brsu.de

2Joachim Hertzberg is with Osnabrück University and
DFKI RIC Osnabrück Branch, 49076 Osnabrück, Germany
joachim.hertzberg@uos.de

Children pick up social norms mainly through interaction
with their families, and usually from schools, their own
peers and (fortunately, or not) the media as well. They
learn how to perform tasks, as well as how not to perform
them (e.g. clothes should be hung or folded and placed in
the closet; or that a glass of water should be placed on a
coaster and not directly on the table). They learn manners
(e.g. that they should use the word ‘please’ when asking for
something), and they learn when and which substitutions are
acceptable (e.g. that a mug may be substituted for a glass but
not the other way around, and that such a substitution is not
appropriate when the drink is for a guest). Such knowledge
clearly goes beyond how to accomplish tasks.

Let us consider the task of serving water to someone.
Humans know that a glass should be filled with water and
served to the guest, and that glasses are in a particular
cupboard in the kitchen. Robots should know this too. Should
humans not find any glasses there, they know that there may
be some glasses in a sink, or a dishwasher, but that they
should be checked to ensure that they are clean. Robots
should probably know this too. In some cases, humans may
choose to simply use a mug instead of washing a glass.
Robots may know that such substitutions are possible if
this is specified explicitly. When serving the person, humans
know that the glass should be placed on a coaster. Robots
should know this too.

There are various types of knowledge described in the
use case above. There is the knowledge of the goal (serving
a glass of water) and matching this with the procedural
knowledge of how to go about doing this. Usually, this
knowledge includes the objects with which the tasks are to
be accomplished (e.g. the glass, the coaster, the cupboard).
There is also the knowledge of when it is socially acceptable
to make substitutions and when it is not.

While the agent should be capable of learning much of the
knowledge mentioned above, it is also expected to function
sufficiently well, out-of-the-box. Knowing how to do many
things, however, is not sufficient, nor can this be defined
as intelligence. “ ... The true test of intelligence is how we
behave when we don’t know what to do” [1].

What we want is an approach that allows the agent to
determine when it has insufficient knowledge, to acquire it,
when possible, or find an alternative, and then successfully
carry out the task.

Our approach adopts the open world assumption (through
the use of DL which by default assumes incomplete infor-
mation), so unless our knowledge base contains a statement
(or can infer one) to the effect that something is true or that
it is false, our query would return ‘do not know’.

IROS-DevSoR 2013 Proceedings of International Workshop on Developmental Social Robotics

1



In the work presented here, knowledge of how best to
carry out basic tasks is encapsulated within Hierarchical
Task Network (HTN) planning [2] methods and operators.
Methods recursively decompose complex tasks into primitive
ones which can be carried out through the execution of
grounded operators. Together with the state of the world,
these methods and operators constitute the planning domain.

In an environment shared by humans and artificial agents,
this approach is beneficial, as it is more understandable for
humans; and a good agent should be able to communicate
its plan at all times [3]. In addition, it lets the human user to
specify the way he/she wishes to have a task accomplished
in an intuitive way.

Let us consider the task of watering a plant; the domain
modeler would specify methods and operators which de-
scribe how the task is to be accomplished and specify that
a watering can should be used. A planner queries for the
initial state of the world and, given the goal, generates a
task network. The plan is simply the sequence of actions
found in the leaf nodes of the network from left to right.

If there is no watering can in the domain or, despite all
of our methods and operators, no decomposition is found
to accomplish the task, the plan generation process will fail.
For example, when the watering can exists but is inaccessible
and we have no means by which to make it accessible.

One would intuitively expect a human to ask for help or
to simply use something else to accomplish the task (e.g. a
tea kettle). This ability to effortlessly adapt our actions to
unexpected situations, especially given the dynamic nature
of our environment and the amount of uncertainty about it,
is perhaps one of the most underestimated human abilities.
Very often, changes in our plans have to do not so much
with how we carry out a task, but with what we carry it out.

Similarly, it would be desirable for an autonomous agent to
ask for help (instead of simply communicating that it cannot
accomplish the task). It would be even better if the agent
could itself reason about what a good substitution would be
and ask for a user’s approval before attempting to make the
substitution.

This work argues for both the benefits that come from
allowing agents to make substitutions; and demonstrates
how the use of functional affordances, conceptual similarity
and spatial proximity can allow agents to reason about and
identify appropriate substitutions.

II. AFFORDANCES

The concept of affordances provides us with the necessary
perspective with which to equip agents to behave with such
flexibility. Affordances describe “opportunities for action”
[4]. This work adopts the notion of affordances, although
Gibson’s action/perception coupling is not dealt with directly.
Gibson’s original definition has been refined by many re-
searchers, but a generally agreed upon interpretation narrows
the list of action choices to those of which an actor is
aware. Using the refined definition, affordances are neither
solely a property of the object nor of the actor, but of their
relationship.

Under Gibson’s original definition, the set of affordances
for a given object may be quite large, and may include
actions that are neither socially expected nor socially ac-
ceptable (e.g. throwing a chair). In this work, we adopt
Norman’s definition of perceived affordances which allude to
“how an object may be interacted with based on the actor’s
goals, plans, values, beliefs and past experience” [5]. This is
consistent with our ideal domestic service robot: a goal-based
[6] agent that can also learn from experience, and adheres
to the values and beliefs of its group.

A. Distributed Cognition

We need a starting point for our agent’s socialization
process – a kernel of norms, if you will, which represents
these values and beliefs in a manner that permits the agent
to make appropriate decisions. Where could knowledge of
social norms come from, and what does it look like? To
answer this question, a paradigm shift is necessary to view
“knowledge” as facts that have been shaped by the values,
beliefs and experiences of groups of people. For example, the
fact that teacups are for drinking tea may not hold in Japan
where tea is drunk from a bowl, or in Argentina where it
is drunk from a hollow gourd. In fact, the word ‘tea’ itself
would no doubt refer to different types of tea altogether. The
English definition of a teacup is rooted in the English cultural
tradition of drinking tea. We know this from experience (our
own or, interestingly, that of other individuals of the group).

With this in mind, we note Hutchins’s theory of distributed
reasoning and cognition which states that knowledge lies not
only within the individual, but in the individual’s social and
physical environment [7]. Others have further elaborated this
idea [8]. This concept is appealing, as it acknowledges the
impact that social groups have in shaping what we know.
Moreover, it implies that it is no longer necessary for one
to experience something him, her or itself in order to know
something.

One could, therefore, argue that resources such as dictio-
naries, the Internet, WordNet, ConceptNet, OpenCyc [9], and
the work of projects such as RoboEarth [10] are an example
of distributed cognition, albeit for those groups whose native
language is English since “language does not exist apart from
culture” [11]. This paradigm allows us to reformulate the
question: How can the agent acquire, reason and manipulate
knowledge to behave in a socially compliant manner?

B. Functional Affordances

The answer lies in the simple notion that objects are made
to be used for (or exist for use in) specific tasks, and that
this knowledge has been shaped by the norms of the group.
Such functional affordances [12] link the idea of “purposeful
actions” to the objects, and account for descriptive social
norms (“what is usually done in a given setting” [13]). They
include within them the “values and beliefs” and provide
us with a starting point for “past experience”. They can
then be manipulated and adapted based on further interaction
with the social group that the agent is part of. The result is
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behavior that is socially expected; we are using objects for
what they were meant to be used for.

There are other benefits to using functional affordances.
By considering functional affordances, and not all “oppor-
tunities for action”, the action space is reduced. They also
allow users to specify more general tasks. For example, when
asked to “serve a drink”, any object meant ‘for drinking’
could be served without the need to explicitly specify a
particular drink. This is more important than it seems at
first glance, since much of our interaction with each other
involves a great deal of underspecification.

We propose to use dictionaries as a source from which
an agent acquires these functional affordances. They provide
concise and unambiguous definitions of objects that almost
always include their function. For example, a teacup, is
defined as “a cup from which tea is drunk” [14], and a cup is
“a small, bowl-shaped container for drinking from, typically
having a handle” [14]. Therefore, dictionaries make ideal
sources to mine the functional affordances of objects from.

Objects may have more than one functional affordance
(e.g. a bottle has the primary functional affordance of stor-
ing liquids but a secondary functional affordance can be
learned through interaction: it is also for drinking from).
These affordances are included within the domain model
and are represented compactly in DL. This allows us to use
the reasoning powers of existing tools to bring about the
robust and flexible behavior described above. The functional
affordances of parts of objects are also modeled. This has
two main benefits. First, it acts as a causal link, explaining
why an object has a given affordance, and second, it helps
the agent to recognize affordance cues or stimuli [15], [16]
at execution time and respond to them.

Our HTN planning domain already provides us with the
‘best way’ of carrying out a task (e.g. it would specify that
tea should be served in a teacup). Knowing the function of an
object allows us to behave flexibly in case of plan generation
failure (e.g. we know that all tea cups are dirty, and we
do not know how to make them clean, so a plan cannot
be generated) or execution failure (e.g. we did not know
they were all dirty at planning time but found out during the
course of execution). Choosing to use another object with
the same functional affordance is the socially-expected and
generally accepted course of action.

III. SOCIALIZING AGENTS

In the following sections, we demonstrate how our
affordance-based approach leads to flexibility, makes for
compact representations, and allows the social norms to
be refined, to those of the group, through interaction. For
example, humans cohabiting the environment might ask the
robot to clean the bathrooms only with the blue cleaning
cloths, or to serve them tea only in their favorite cup.

A. Socially-expected Behavior

In Section I, we saw how the act of making substitutions is
a socially-expected behavior in itself. We expect that people
are able to find ways to accomplish their tasks under all

but the most extreme cases. In this section we demonstrate
how the combination of procedural knowledge (how to
accomplish a task) and the functional affordances of objects
(what objects are meant to be used for) together provide us
with the socially-expected choice of the substituted objects
(e.g. glasses and mugs are both used to drink from).

Simply querying the knowledge base (KB) for objects
with the given functional affordance provides us with an
appropriate substitute. This is accomplished without the need
for cumbersome, ad hoc and often subjective categorization
of objects. For example, ontologies of domestic objects (such
as those presented in Section II-A) may contain categories
such as ‘furniture’ or ‘perishable objects’. The problem with
this is, first, that it simply refers to qualities that a group
of items may have (in the case of perishable goods, they
will eventually perish); and that the decision of whether an
object belongs to such a category or not may be subjective
(is a spoon or a chandelier considered furniture?).

World models tend to describe the form of the world:
objects, their shapes, colors or locations and their spatial
relationship to one another. The same world can be described
by the functions it is meant to afford. Studies in child psy-
chology have found that children use functional affordances
to generalize the name of newly-learned artifact categories
and otherwise rely on global similarity when they could not
interact with the objects [17].

There are cases, however, when using functional affor-
dances alone will not be enough. Some objects are used
for a very specific task (e.g. watering cans are used for
watering plants). The only other object which is used for
the same task would be a ‘hose’, and this is only for
watering plants outdoors. In this case, both share the same
functional affordance of watering plants; but whereas it may
be desirable to substitute the watering can for the hose,
the opposite is not true, and so a substitution using only
functional affordances may fail.

Here, the agent would need to look for objects which
are conceptually similar to the watering can. The similarity
measures which are often used may not yield the results we
have in mind (we may not care about the color of an object,
but rather the presence of a handle for example).

For describing similarity, we propose the use of Con-
ceptual Spaces [18]. They provide a multidimensional fea-
ture space where each axis represents a quality dimension
(e.g. brightness, intensity, and hue). Points in a conceptual
space represent objects, while regions represent concepts.

Let us take the example given in [18]: the three quality
dimensions in our example above can together be used to
describe the ‘color’ domain. A region on the red axis could
be described as having the property ‘red’. A point in this
region could represent the concept ‘apple’ in conjunction
with other domains such as ‘taste’ or ‘shape’. We could even
relate the property ‘red’ to the taste ‘sweet’.

Conceptual spaces are built up by the various quality
dimensions. The agent should learn the relation between
these quality dimensions and given tasks. For example, for
lifting an object, the most important quality dimension is its
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weight – its color would be irrelevant. These relations could
then be used as weighting factors to determine how well an
object would substitute for another in achieving a given task
(similarity would be measured as the weighted Euclidean
distance).

Conceptual spaces can also represent shape (e.g. handles
and spouts). The detection of these quality dimensions ob-
viously requires more processing by the perception com-
ponents than for example, the simple detection of hue. To
substitute a watering can to water plants, the capacity to
hold water is the most important affordance, followed by the
presence of a handle and a spout. Using conceptual spaces,
the agent might find that the tea kettle is the most appro-
priate substitution. The combination of active perception at
execution time and task-oriented perception would allow the
agent to actively search for those features (e.g. spouts and
handles) which are relevant to the task at hand, as opposed
to passively picking up any and all cues. [19] has shown
that the time complexity for such a search is far better when
compared to a data-driven search.

B. Socially-accepted Behavior

Having shown how functional affordances provide us with
the ability to make basic socially-expected substitutions, we
now demonstrate how socially-acceptable substitutions can
be made by combining them with conceptual similarity and
proximity in various ways to create a hierarchy of constraints.

Using functional affordances and conceptual similarity,
an artificial agent can start by attempting to satisfy the
constraints specified in the methods and operators (e.g only
use a unique instance, such as my teacup – if this was
specified in the goal – or an instance of a given object). If it
fails to find the suitable object, it would iteratively attempt
to find objects which satisfy fewer and fewer constraints.

The first level above that of using an instance of a given
object (e.g. a teacup) is to use any object with the same
functional affordance and high conceptual similarity (e.g. a
mug). The next higher level would remove the constraint that
the substitute should be conceptually similar, relying only on
a shared functional affordance (e.g. a drinking flask). Should
the agent not find such objects and given the old adage that
“form follows function” (the form of objects is based on their
function), conceptual similarity is then used to identify those
objects which do not share the same functional affordance
and yet are conceptually similar (e.g. a measuring cup). The
top level attempts to infer the function-relevant attributes and
identify objects matching these properties (e.g. a jar).

It is important to note here that injunctive social norms
(“what is typically approved in society” [13]) are highly
dependent on context and may differ from person to person.
For example, it may be acceptable for me to have my tea
served in a mug, but may not be acceptable in the presence
of guests, or for another user.

The ability of the agent to acquire and manage user
preferences in their proper context is a must. Both of these
topics are currently being investigated.

Humans prefer to take advantage of objects within their
immediate spatial surroundings when making substitutions
(e.g. using magazines which may be on the table instead
of a coaster). Agents should also exploit spatial proximity.
The importance of proximity can be altered to make it either
easier to move from one level of constraints to another by
increasing its importance (prefer objects which are close,
even if they are in a less constrained category of objects), or
more difficult to move up by decreasing its importance.

The work presented in [20] and [21], while addressing
a different focus, is perhaps the closest to ours in that
they also use functional affordance and conceptual spaces to
measure similarity. Their work is based on an adapted version
of the HIPE theory of action and so they have included
additional types of affordances based on both physical and
socio-institutional constraints.

C. Acting

Making substitutions also makes it possible for agents to
take advantage of opportunities, e.g. using a magazine that
happens to be on the table as a coaster. In order to accomplish
this, we need to combine both the execution of plans which
have been generated through the deliberation process and
reactive behaviors which may be triggered by affordance
cues.

We propose a simple blackboard architecture where af-
fordance cues, in the form of conceptual space quality
dimensions, are being posted by all artificial agents as they
move through the environment. These cues might be of
varying complexity, from simple color hues which would
cost very little in terms of perceptual processing to more
complex concepts such as shape. They might have been
picked up as part of the plan’s execution, and would be kept
in the system for a given duration. Upon execution failure,
the cues which are in close proximity can be used to identify
viable candidates for substitutions. As Steedman points out
in [22], “...it is probably better to look at those plans the
situation affords, rather than backward chaining to conditions
that there may be no way for you to satisfy...”. By having
all agents post cues, information about the state of the world
can be shared.

The same behavior can guide plan execution when things
are going as planned, allowing the agent to take advantage
of opportunities before failures occur. For example, cues
associated with a drink bottle may have been picked up
on the way to the location specified in a plan. This ‘short
cut’ could be taken advantage of, again depending on the
flexibility that the human user has allowed. A cupboard full
of glasses would guide the agent to grasp any of them. In
the case of execution failure, an agent might take the more
‘resourceful route’ of making a substitution or attempt to
use the same object by finding other instances, or of using
objects with the same functional affordance.

Taking advantage of opportunities by reacting to affor-
dance cues has the added benefit of injecting that bit of
randomness that often leads to improvements. Although our
approach will use a plan library to avoid having to generate
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plans for the same routine tasks from scratch, reliance on
these plans could lead to stagnation. New events or objects
may provide a better way for the task to be accomplished,
but would never be considered if the same saved plan is
always reused. For example, buying an autonomous vacuum
cleaner may render the continued use of the conventional one
undesirable. The use of a strategy that would occasionally
resort to generating a plan, instead of using one from the
library, should be investigated.

Whether through interaction or through observation, an
agent’s view of objects’ functional affordances will change.
If we recall the possibility of learning an additional func-
tional affordance for a bottle as mentioned in Section II-
B, we see that it is just as possible for the functional
affordance to be unlearned or marked undesirable if the agent
is so instructed. This developmental dimension that arises by
considering the function of objects fits nicely with the profile
of our desired domestic service robot.

One open question is when the agent should stop climbing
the “flexibility ladder”, that is, when it should concede that
it cannot achieve the task.

IV. DISCUSSION

As mentioned above, the focus of our work is to enable
agents to handle unexpected situations more robustly by
substituting objects as humans do. Traditionally, researchers
have focused on learning the link between objects and
actions, for example, by analyzing the link between object
attributes and the actions they afford (as in [23], [24], [25]),
through experimentation (e.g. [26], [27], [28], [29]), or by
imitation/demonstration/action recognition (e.g. [30], [31]).

These approaches involve time-consuming processes, and
a number of them may yield affordances which lead to
the suboptimal use of objects. Moreover, they may neither
be goal-oriented nor socially acceptable, as they ignore
context/situation. Simply linking object attributes with the
actions that they afford does not provide us with socially-
expected or acceptable behavior. For example, the affordance
rollable is often given to cylindrical parts, although rolling
bottles is not a socially-expected behavior. Knowing that
concave objects are fillable is obviously useful, but simply
knowing that a spoon may be filled, does not make the task of
watering a plant with one socially expected (or acceptable).
Learning affordances by experimenting can confirm or repu-
diate the existence of an affordance, but says nothing about
the affordance leading to socially-compliant behavior. That
is not to say that experimentation is not an important part
of development. It lets agents understand their own body’s
movements and by so doing, facilitates learning by imitation
[32].

Learning from demonstration is more suitable for social-
izing robots. The ongoing research in the field of action
recognition is highly relevant. It lays the foundation, not just
for equipping agents to learn how to perform new tasks by
watching humans perform them, but for the more socially-
complex ability of anticipating the actions of humans (as in

[33], [34], [35]). Proactive behavior, in response to antic-
ipating other agents’ actions, can be seen as opportunistic
behavior. This research also facilitates the socialization pro-
cess directly as the substitutes that humans themselves make
in different situations can be learned by the agent.

The work carried out in the natural language understanding
field is also of great importance as it would make available to
the agent the vast quantity of written, as well as audio and
video resources, in addition to facilitating communication
between the lay user and artificial agents. Moreover, the
study of language is inherently intertwined with our own
understanding of ‘planned action’ [22]. Language describing
human-object interactions [36] is already a focus.

Language is but part of the human-robot interaction pro-
cess. Another vital component of social intelligence [37]
is having agents pick up social cues, e.g. to recognize
humans’ emotional states in order to respond effectively.
This requires multimodal interaction such as gesture, gaze,
head movements, vocal features, posture, proxemics and
touch [37]. Together, such building blocks would allow more
sophisticated behavior to emerge, such as perspective taking
[38].

Systems that learn users’ personal preferences through
repeated interactions with them (such as [39]) and manage
various profiles are necessary. Much work already exists
– our own online profiles and preferences are tracked and
managed. We even actively facilitate this process via social
media. Investigating the application of these methods to our
human-robot interaction scenarios, would be beneficial.

Given the stated goal of placing service robots in domestic
environments, it is surprising that marketing professionals,
whose job it often is to place consumer goods in domestic
environments, have not played a larger role. It is their job
to know the consumer well, to be able to recognize the
various target groups and to know what each group expects
and would accept. It would seem that they are best placed
to identify which out-of-the-box capabilities/features these
groups would expect.

The importance of context has been emphasized through-
out this work; however, the means by which to represent
situations and context remain a focus of research. For the
moment, our approach simply represents context implicitly
with the plan library as the initial state of the world. The
work of projects such as RACE [40] is therefore of vital
importance as they tackle the complex issues of representing
whole experiences (including context) and learning from
them.

Researchers in the inter-disciplinary field of normative
multiagent systems (nMAS) have reaffirmed the importance
of norms being contextual [41] and have investigated both
computational models of norms, and architectures which
support their use, among others. The violation of norms, and
the consequences of doing so, are a major theme within the
field. In this work, this topic is not dealt with, nor do we take
into consideration the concepts of obligation, prohibition,
deadline, or role for example. The scope of our use of norms
remains limited to the substitution behavior.
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V. CURRENT STATUS AND FUTURE WORK

In Section I, we described many types of knowledge
involved in simply fetching a glass of water. Within our
system, some of this knowledge is stored in an OWL-DL KB.
This allows us to leverage the efficient reasoning powers of
the available tools, such as the Pellet reasoner used here. In
contrast to OWL-Full, which is used in research work such
as [42] and [43], OWL-DL is decidable.

HTN methods and operators encapsulate the procedural
knowledge of how to accomplish a task. The use of HTN
planning, and of its hierarchical approach in particular, is
a design choice which fits nicely with the overall approach
presented here. The choice of the SHOP family of planners
is a pragmatic one. The arguments presented here for the use
of functional affordances, conceptual similarity, and proxim-
ity, could in essence be used to make substitutions using
other planning approaches, given that objects’ functional
affordances are included in the domain, and that conceptual
similarity and proximity can be measured.

To demonstrate how substitutions can be made in our
approach, let us consider the task of serving tea. Intuitively,
this involves going to the kitchen, making the tea and serving
it to the user. Let us assume that we have, stored in the KB,
the contents of the house including: two teacups (teacup1,
teacup2), and two mugs (mug1,mug2).

In order to generate a plan, we use the approach presented
in [44] to first create a constrained problem – one that
only includes the relevant methods, operators and states of
the objects that could be relevant. This is accomplished by
also representing the methods and operators in the OWL-DL
KB. Having identified the given task to be accomplished:
serve(robot, embodiedAgent, drink), the relevant meth-
ods and operators are instantiated in the ABox. Some ex-
amples are depicted in Figure 1. The approach uses the
information within these methods and operators to extract the
relevant literals describing the initial state. The preconditions
which determine applicability include e.g. teacups, and so
this information is included within our planning problem
(no mugs, flasks, measuring cups, or jars for example, are
included in the constrained domain at this stage). The plan-
ner proceeds to generate the plan, grounding the variables
appropriately, e.g. kettle1 for ?kettle. Let us assume,
that clean(?teacup) could not be instantiated because both
teacups were dirty. Climbing the “flexibility ladder” involves
detecting this failed precondition and passing it on to the
Control module (see Fig. 2). It then triggers the expansion
of the domain to include a possible substitute based on
the current “rung” of the “ladder” and the importance of
proximity. In this case, the module would query for other
objects used for drinking from, and then choose instances
of those which are most similar to a teacup. For example,
mugs are more similar than bottles. Simply substituting
one object for another can be insufficient. The object may
have specified methods and operators that accomplish the
same task differently. For example, filling a tea kettle would
involve removing the lid and replacing it again. These steps

     ▼ m_makeTea(?teabag)
▼  m_get(?kettle)
      ▶ goTo(?kettle,ForGrasping)
      ▶ m_access(?kettle)
      ▶ grasp(?kettle,ForTransport)
▼ m_fillFromTap(?kettle)
      ▶ goTo(kitchenSink, ForFilling)
      ▶ position(?kettle)
      ▶ m_removeLid(?kettle,?lid)
      ▶ openTap(coldTap)
      ▶ closeTap(coldTap)
      ▶ m_replaceLid(?kettle,?lid)
      ▶ grasp(?kettle,ForTransport)
▼ m_boilWaterInKettle(?kettle)
      ▶ replace(?kettle)
      ▶ boilWaterInKettle(?kettle)

        ▼ m_get(?teacup)
      ▶ goTo(?teacup,ForGrasping)
      ▶ m_access(?teacup)
      ▶ grasp(?teacup,ForTransport)
 ▶ placeNextTo(?teacup,?kettle)
 ▼ m_get(?teabag)
      ▶ goTo(?teabag,ForGrasping)
      ▶ m_access(?teabag)
      ▶ grasp(?teabag,ForTransport)
 ▶ placeIn(?teabag,?teaCup)
      Preconditions: (clean ?teacup)
                                (have ?teabag)
 ▶ pourHot(?kettle,?teaCup)
 ▶ replace(?kettle)

Fig. 1. An example decomposition of the makeTea task. In bold are
examples, from the text, of the differences in method decompositions for
m fillFromTap(?kettle) and m fillFromTap(?wateringCan), vari-
able types (?teacup), as well as an example of the preconditions used
to generate the initial state.

are absent when filling a watering can. Our approach takes
these situations into account and can therefore be seen as
transforming both the goal and the plan, as in [46]. The
Control module expands the domain to include the instances
of the substitutes as well as all methods and operators that
include its variable type in their arguments, thus ensuring
that e.g. the method fill(?kettle) is included in a newly
expanded domain to water plants.

To accomplish the task with a substituted object, the
original decomposition should be preserved as much as
possible. Thus, a placeholder instance of a clean teacup

is given to the planner and a plan is successfully generated.
At this point, each method and operator (original plan) is
swapped with a corresponding method/operator for the new
object (if one exists), while the remaining task network is
preserved. The variable bindings in the original methods and
operators for ?teacup are replaced with ?mug instead. The
preconditions and effects for the actions of the new plan are
then verified to ensure it is executable.

In the KB, members of the HumanScaleObject class are
related to a functional affordance via the usedFor property.
Functional affordances, such as DrinkingFrom, Boiling, or
Watering, are subclasses of the ActionOnObject class. Fig. 3
shows part of the ontology.

In our ongoing research, we are investigating the represen-
tation of objects in conceptual spaces and the specification,
then learning, of the objects’ quality dimensions’ weights
for a given task. The possibility of autonomously acquiring
the functional affordances from online sources, as well as
developing a means to manage profiles and preferences in
the form of the plan library, will also be investigated.
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Fig. 2. Software architecture of the system extending the hybrid deliberative layer to use affordance-based reasoning in a domestic environment [45]

Fig. 3. The representation of the Teacup class in DL. An instance, ImansTeacup, and the class’s properties, including inherited ones are seen on the right
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Abstract— Learning through self-exploration and imitation
are crucial mechanisms in developing sensorimotor skills for
human infants. In our previous work, we showed that a
robot can self-discover behavior primitives and learn object
affordances similar to infants. Then building predictive mech-
anisms at the affordance level allowed movement planning
and simple goal-level imitation on our robot. The work we
describe in this paper builds upon this system; it describes
how our robot, by using the learned behaviors and prediction
mechanisms, can go beyond simple goal-level imitation and
become a better imitator. For this, we develop mechanisms to
enable the robot to recognize and segment, with the help of the
demonstrator, an ongoing action in terms of its affordance based
goal satisfaction. Extracting sub-goals or important features
from a demonstration is not straightforward as demonstrated
action trajectory may not correspond to any robot behavior
developed so far. Inspired from infant development, we use
motionese to enable the robot to identify the important steps
and the boundaries in the otherwise complex stream of motion
involving multi-objects. Once the sub-goals are obtained, the
robot imitates the observed action by chaining these sub-goals
and satisfying them sequentially. In the experiments, a tutor
used his own action repertoire to move an object around, and
the robot was able to detect and achieve the sub-goals with its
affordance prediction mechanisms and behavior primitives.

I. INTRODUCTION

Infants develop cognitive abilities in a progressive and

staged way. In the initial months of their life, they learn

discriminating and discovering new behavior primitives such

as grasp, shake, and hit from simple actions and reflexes,

e.g, reaching and palmar-grasp [1]. Next, they use these

behaviors to explore the environment and interact with the

objects [2]. It is plausible to think that while interacting with

the environment, babies monitor the consequences of their

actions and relate the consequences to the visual properties

of the objects they interact with. In other words, they learn

object affordances, i.e. the action possibilities offered by

their environment [3]; and learn to differentiate ends from

means. Goal-emulation, a form of imitation characterized

by the replication of the observed end effect, starts after

this period, and infants become skilled at imitating unseen

movements after 12 months of age [4]. Infants’ means of

imitation changes over time; while younger infants are more

inclined in achieving the goal of a demonstrated action, older

infants tend to exactly imitate (and in later stages over-

imitate) the observed target action sequence even if those

actions are not physically related to the goal [5].

In our previous work, we showed that a robot can self-

discover behavior primitives and learn object affordances

similar to infants. This was achieved by first differentiating

the actions based on the differences in tactile perception

[6], and then by learning the relations between objects,

behaviors and effects created in the environment through

physical interaction [7]. After learning, the robot was able to

make plans to achieve desired goals, emulate end states of

demonstrated actions, monitor the plan execution and take

corrective actions using the perceptual structures employed

or discovered during learning. However obtaining more

complex sensorimotor skills such as learning multi-object

affordances and learning certain delicate tasks may require

support from outside, especially when not only ‘ends’ but

also the ‘means’ is important.1

In this paper, the next stage of developmental progres-

sion is studied in the form of imitation learning where

the affordance prediction capability for single-objects does

not suffice to reproduce complex movements. These tasks

are taught to a robot through imitation, where the robot

observes the demonstration, extracts important steps from the

movement trajectory, encodes those steps as sub-goals and

find the behaviors to achieve these goals. Learning higher

level skills based on previously learned simpler ones is

more economical and usually easier for building a complex

sensorimotor system[8], [9]. Therefore, in our study learned

affordance perception and behavior primitives are used as

basic elements in understanding and achieving sub-goals.

1Imitation refers to finding the behavior sequence that enables the robot
to follow a similar trajectory with the demonstration. Goal emulation on the
other hand refers to computing the behavior sequence to achieve the goal
independent of the demonstration. Even young infants are good in goal-
emulation as probably goal-emulation does not require understanding of
demonstrator’s intent or exact action sequence. It is sufficient to extract only
the final situation to map it to a goal state and to find the behavior sequence
from its own repertoire to achieve this goal. Similar to younger infants, goal
emulation is easier in the earlier stage of our robot’s development. On the
other hand, imitation requires representing and mapping important features
of the complete action trajectory, which is accomplished in the later phases
of development.
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Extracting sub-goals or important features from a demon-

stration is not straightforward as demonstrated action trajec-

tory may not correspond to any robot behavior developed

so far. For example when the robot is asked to achieve

a task, the observed trajectory may not be represented in

robot’s sensorimotor space, and executing the behavior that

seemingly achieves the goal would not satisfy the imitation

criteria. Infants also have similar difficulties in mapping

observed actions within their own repertoire and in imitating

these actions successfully.

To overcome this difficulty, parents are known to make

modifications in infant-directed actions, i.e. use ”motionese”

[10], [11]. Motionese is characterized by higher range and

simplicity of motion, more pauses between motion segments,

higher repetitiveness of demonstration, and more frequent

social signals to an infant [10], [12]. Fine-grained analysis

using a computational attention model further reveals the role

of motionese in action learning [13]. Longer pauses before

and after the action demonstration underline the initial and

final states of the action (i.e. the goal of the action) whereas

shorter but more frequent pauses between movements high-

light the sub-goals of the action [14]. Of particular interest

is that such modifications are elicited by the responses of an

action learner [15]. Not only the age of a learner but also

the ability to recognize the demonstrated action (i.e. visual

attention) influences the task demonstration.

Inspired from infant development, in this paper we also

use ‘motionese’ to enable the robot to identify the important

steps and the boundaries in the otherwise complex stream of

motion involving multi-objects. A human tutor can exagger-

ate the relevant features in his demonstration and enable the

robot to map the exaggerated sub-steps into its own behavior

repertoire and imitate the action sequence successfully.

The idea of using previously developed capability for af-

fordance prediction in imitation learning is not new. [16] also

used affordances that are modeled in Bayesian Networks to

interpret demonstration and imitate using the robot’s own be-

haviors. While they were able to recognize one-step actions

and make one-step predictions, our robot can make multi-

step plans for goal emulation as our affordance framework

supports multi-step prediction. However more importantly,

our system, with the reported work in the current paper,

can extract multi-step behaviors from the demonstration that

may include multi-objects. Moreover different from other

studies [17], as we follow a developmental approach, our

system would support naive tutors who can naturally adapt

demonstrations based on the robot’s imitation performance

and use some ‘motionese’ features enabling the robot to

imitate complex actions.

The rest of this paper is structured as follows. In the next

section, we give the physical properties of the experimental

platform, and detail the robot’s perceptual and motor abili-

ties. Next, we describe the affordance framework that enables

next state prediction, plan generation, goal emulation and

imitation. In Section IV, the experiment with an experienced

tutor is given where ‘motionese‘ based demonstration is

shown to be effective in imitating complex action sequences.

Fig. 1. The robot hand, arm, range camera (top-right), some objects and
a tutor constitutes the experimental setup.

II. EXPERIMENTAL FRAMEWORK

A. Robot System

An anthropomorphic robotic system equipped with a range

camera is used as the experimental platform. This system

employs a 7 DOF Motoman robot arm, that is placed on a

vertical bar similar to human arm as shown in Fig. 1. A five

fingered 16 DOF Gifu robot hand is mounted on the arm

to enable manipulation. The maximum length of Motoman

arm and Gifu hand is 123 cm and 23 cm, respectively. For

environment perception, an infrared range camera (SR-4000),

with 176x144 pixel array, 0.23◦ angular resolution and 1 cm

distance accuracy is used.

B. Perception

a) Object Detection: The robot’s workspace consists

of a black table, a human demonstrator’s arm and hand, the

robot’s own actuator and colored objects. The demonstrator’s

and robot’s actuators are also covered with black material

to distinguish the objects easily. The region of interest is

defined as the volume over the table, and black pixels are

filtered out as the range readings from black surfaces are

noisy. As a result, the remaining pixels of the range image

are taken as belonging to one or more objects. Because the

range camera does not provide reliable color information, the

objects are segmented using Connected Component Labeling

algorithm [18] based on the depth information.. In order to

reduce the effect of camera noise, the pixels at the boundary

of the object are removed, and median and Gaussian filters

with 5x5 window sizes are applied. Finally, a feature vector

for each remaining object is computed using the 3D positions

obtained from the depth values of the corresponding object

pixels as detailed in the next paragraph.

b) Object feature vector computation: The perception

of the robot at time t is denoted as [f t,()
o0

,f t,()
o1

..] 2 where f

is a feature vector of size 43, and the superscript () denotes

that no behavior has been executed on the object yet. Four

channels of information are gathered and encoded in a feature

vector for each object oi. The first channel consists of object

2Note that t and oi are sometimes omitted in the rest of the text in order
to ensure easy readability of the notation.

IROS-DevSoR 2013 Proceedings of International Workshop on Developmental Social Robotics

10



visibility feature which encodes the knowledge regarding

the existence of the object. The second and third channels

correspond to the object position and object dimensions in

the coordinate frame shown in Fig. 1. The fourth channel

encodes the shape related features, where the distribution

of the local surface normal vectors are used. Specifically

histograms of normal vector angles along the latitude and

longitude, 18 bins each, are computed and used. The final

feature vector is:

f () = [vis,pos,dim,histlatitude,histlongitute]

C. Behaviors

The robot interacts with the objects using three different

behaviors, namely grasp, release, and push where the object

center position is used to guide the execution. For any

behavior, initial, target and final hand positions are computed

with an offset to the object center, and a trajectory that passes

through these three points are executed as follows:

• Initial position is the offset from the object where the

robot places its hand prior to interaction. This parameter

is fixed and same for all behaviors, and takes the robot

hand to the back-right diagonal of the object from the

robot’s perspective. If the object to be interacted is

already in robot’s hand, the initial position is set as the

current position of the robot hand as there is no need

to re-position the hand.

• Target is the offset from the object-center that deter-

mines which part of the robot’s hand makes contact

with the object. Using this parameter which is unique

for each behavior, the robot touches to the object with

its palm in grasp and release behaviors, and with its

fingers in push behavior.

• Final position is the offset from the object where robot

brings its hand at the end of the behavior execution.

Final position can be set to any arbitrary point in the

robot’s workspace except very close to the table to avoid

any collision.

• Hand-close and hand-open positions are again offsets

from the object. The hand clenches into a fist with

grasp and release behaviors when it is close to the

object center, and wide-opens with release behavior at

the end of action execution. Push behavior does not

change hand-state unless the object is already in the

robot’s hand. In this case the hand wide-opens in the

beginning.

With appropriate ranges of the parameters, target objects

can be grasped, released or pushed to different locations

depending on the final position. While this set sounds like

a minimal behavioral repertoire that is manually coded, it

is not. On the contrary, these behaviors along with their

parameters were transfered from a previous developmental

stage, namely behavior formation phase, where they were

discovered through exploration using palmar-grasp reflex and

a simple reach action that modeled a one-two months old

infant’s seemingly non-purposeful hand babbling [6]. Object-

palm contact which precedes hand flexion, and object-finger

contact without any hand-closing during push behavior were

direct consequences of this behavior formation phase.

In the rest of the paper, the behaviors are represented as

b{target,open,close}j
(posfinal) or bj(ρf ) in short, where j

denotes the behavior type and ρf denotes the relative final

position of hand.

III. MOVEMENT GENERATION BASED ON

AFFORDANCE PERCEPTION

Imitation and goal emulation are achieved by finding

behavior sequences that will bring the initial state (Sinit) to

the goal state (Sgoal) depending on or independent of demon-

stration, respectively. For this purpose, the robot should have

the ability to predict the effects of its behaviors on the

objects, i.e. it should be able to predict the next state (St) for

any behavior executed in a given state (St). In this section,

we present the structures and methods that enable imitation

and goal emulation.

A. Affordances and Effect Prediction

In our previous work [7], [6], the affordances were defined

as (object, behavior, effect) relations, and with this we have

shown that affordance relations can be learned through inter-

action without any supervision. While visibility and position

features could be accurately predicted for any behavior, the

change in other features such as dimension or shape could

not be predicted reliably. As learning the prediction ability is

not focus of this paper, we skip the details and shortly present

how prediction operator works. This prediction operator can

predict the effect on position and visibility features given

object feature vector, behavior type and behavior parameters:

(f (), bj ,ρf ) → f ′[v,p]
bj
effect (1)

where f ′[v,p]
bj
effect denotes the predicted (′) effect in visibility

and position features.

B. State Transition

The state corresponds to the list of feature vectors obtained

from the objects in the environment:

S0 = [f ()
o0
, f ()

o1
, .., f ()

om
]

where () denotes the zero length behavior sequence executed

on the objects, and m is the maximum number of objects.

If the actual number of objects is less than m, the visibility

features of non-existing objects are set to 0.

State transition occurs when the robot executes one of its

behaviors on an object. Only one object is assumed to be

affected at a time during the execution of a single behavior,

i.e. only the features of the corresponding object is changed

during a state transition. The object monitoring module

always makes sure that the object indexes are set correctly

during interactions. Furthermore as shape and dimension

features cannot be predicted reliably, they are assumed to

remain fixed. Thus, the next state can be predicted for any

behavior using the prediction scheme given in Eq. (1) as

follows:

S
′
t+1 = St + [...0,f ′

o[v,p]
bj
effect, 0, ..] (2)
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where bj behavior is executed on object o and only visibility

and position components of this object change by the

summation operator.

Using an iterative search in behavior parameter space, the

robot can also find the best behavior and its parameters that is

predicted to generate a desired (des) effect given any object:

bb(f (),f [v,p]des
effect) = argmin

bj ,ρf

(f [v,p]des
effect − f ′[v,p]

bj
effect)

(3)

where bb denotes “best behavior” operator.

C. Goal-emulation and plan generation

In the previous section, how the robot can (1) predict

the effect given object-behavior pair and (2) find the best

behavior to acquire a desired effect were explained. Because

prediction is based on vector summation, the robot can

estimate the total effect that a sequence of behaviors will

create by simply summing up all effect vectors, and thus

can use this for multi-step prediction.

Goal-emulation is achieved by generating a plan, i.e.

finding the behavior sequence required to transform the given

state into the goal state. In this study, forward chaining is

used to search the state space and find a sequence (see

Fig. 2 right). Forward chaining uses a tree structure with

nodes holding the perceptual states and edges corresponding

to (behavior-object) pairs. The execution of each behavior on

each different object can transfer the state to a different state

based on Eq. (2). Starting from the initial state encoded in the

root node, the next states for different behavior-object pairs

are predicted for each state. In order to reduce the search

time, the states with minimal distance to the goal state are

expanded first.

The goals are represented as desired world states, however

as only the position and the visibility can be predicted, the

goal representation only includes position and visibility

features:

G = [poso1 , viso1 , poso2 , viso2 ..]

Fig. 2. The robot can choose to follow the demonstration by executing
the behaviors from Imitation module or can find the sequence of behaviors
using Goal Emulation module in any step to reach to the desired state.

D. Imitation through scaffolding

The robot observes the demonstration and extracts the

initial and goal states, as well as the intermediate states

(encoded as sub-goals) by detecting pauses which may be

introduced by a motionese engaged tutor. If no pause can be

detected, then a random intermediate state would be picked

up as the sub-goal state.

Imitation module (Fig. 2, left panel) finds the behavior

sequence that brings the initial state to the goal state fol-

lowing the detected state sequence. Finding the behavior

that transfers one observed state to the next observed state

corresponds to one-step goal-emulation, which the robot can

perform as described in Section III-C and illustrated in Fig. 2,

right panel. Thus, imitating the behavior sequence practically

corresponds to applying goal-emulation for each successive

sub-goal extracted from the observed demonstration. There-

fore, the arrows that connect successive sub-goal states in

Imitation Module (Fig. 2, left panel) uses goal-emulation

mechanism as a subroutine. In the experiments reported in

this article, each arrow happened to correspond to a single-

affordance perception, i.e. each state transition was achieved

by one behavior. However, our framework is not limited with

this, and in fact it can find multi-step plans for reaching

individual sub-goals.

Selecting behaviors based on Imitation Module results in

following the exact trajectory of the demonstrator, i.e. achiev-

ing all detected sub-goals using robot’s behavior repertoire,

to the extent that as decimated by the pauses inserted by

the tutor. On the other hand, when Goal Emulation Module

(Fig. 2, right panel) is selected, then it finds a behavior

sequence that brings the current state to the goal state using

forward chaining independent of the intermediate states.

Using different approaches (modules) to imitate an ob-

served action has its own advantages and disadvantages.

If the tutor has engaged in a motionese based interaction

with the robot, and provides sufficient cues to the robot,

Imitation Module would make complex imitation possible.

However this requires keeping all sub-goals in the memory of

the robot cognitive system, and executing all corresponding

actions, which might not be practical if the tutor makes a

large number of pauses. Furthermore, the Imitation Module

needs additional mechanisms to deal with failures during

execution, and to take corrective actions. On the other

hand, Goal Emulation needs no additional mechanisms as it

can automatically recover by simply reassessing the current

state and re-planning. However it may fail in multi-object

environments as predictions are made based on single-object

affordances. In the current implementation, we followed

a simple approach where the Behavior Selection Module

simply reflects the choice of the experimenter that is con-

veyed through a Graphical User Interface. Work is underway

to make the system autonomously choose the appropriate

execution mechanisms depending on the demonstration.

IV. EXPERIMENTS

In this experiment, we verify our imitation system by

showing an action trajectory to the robot with several pauses
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(a) Demonstration of the experimenter

(b) Imitation of the robot

Fig. 3. Snapshots where the robot imitates the demonstration performed by an experienced tutor. In (b) from left to right, grasp-up, grasp-left, grasp-right,
release, and push actions are planned and executed. Please refer to Section IV for details.

and letting the robot to imitate our demonstration. The

demonstration was performed by an experienced tutor who

knows the working principles of the system. The tutor used

his own action repertoire to move the object around, while

the robot monitored the object, detected the pauses, and

encoded these pauses as intermediate states. Following the

demonstration, the robot found the sequence of behaviors to

obtain the intermediate states in sequence using the imitation

procedure summarized in Fig. 2 and behavior selection

procedure given in Eq.( 3).

The humans demonstration and imitation of the robot are

shown in Fig. 3. From the robot’s point of view, the object

was (1) lifted up, (2) moved to left, (3) moved to right in

the air, (4) put on the table, and (5) removed from the table.

The robot, after detecting the intermediate states, computed

a behavior sequence with the following behaviors:

1) grasp (−3,+21,−1)
2) grasp (+9,+13,−3)
3) grasp (−21,+5,+4)
4) release (+4, 0,+4)
5) push (+10,+4, 0)

Execution of these behaviors resulted in a (sub-goal) tra-

jectory that is similar to the demonstration with the following

exceptions. First of all, the object was not moved exactly to

the same positions in intermediate steps because of the noise

in the perception and due to kinematic constraints of the

robot. Second, after the object was released, it rolled over the

table (to the right) and did not end up exactly below the hand

as the robot predicted. Third, push behavior could not roll

the object off the table without (the experimenter) bending

the table as the push was not strong enough to cause a high-

speed roll. Still, the robot was able to accomplish the task

by achieving the observed sub-goal changes using its own

behaviors. For example, the tutor’s ‘removal’ of the object

from the table was mapped to push behavior of the robot

as the object was rollable, and push applied to a rollable

object was predicted to make the object disappear. As another

example, ‘putting on table’ action performed by the tutor was

mapped to robot’s release behavior which has similar effect.

As we presented in Section III.C, our goal-emulation

system supports multi-step planning and execution of a be-

havior sequence to achieve the desired goal. However, in this

particular experiment, achieving each subgoal was possible

with execution of one behavior primitive. While the the full

power of multi-step affordance prediction was not explicitly

demonstrated in this experiment, the focus of this paper was

to show the feasibility of imitation through goal emulation

rather than providing an integrated and complicated scenario

with complex imitation and planning. Readers interested

in goal-emulation through plannning based on multi-step

affordance prediction can refer to [7] where a 7-step plan

was generated and executed to bring an object to an observed

goal position.

V. CONCLUSION

This study addressed how a robot following a development

learning approach for its motor repertoire formation and

affordance based planning can benefit a tutor who naturally

adapts his demonstration to teach the robot. The limited

capacity of the robot to imitate triggers a change in the

tutor to modify his demonstration. In infant development

this is often called motionese which captures the general

notion that when caregivers teach new skills to infants

through demonstration, they often demarcate important parts

of their action by using pauses, sharp movements, repeats

and attention grabbing signals.

In this study we aimed to realize such a learning scenario

on a physical robot. For this, we built upon the development

framework we have developed, which equipped our robot -

via learning- with motor behaviors [6] and affordance based

prediction capabilities [7]. We have shown that our robot

could perform goal level imitation, which is called as ‘goal
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emulation’. In this mode of operation, only the final goal of

the action matters; not how it is achieved. For example a

demonstration of grasping and taking away a ball from the

view of the robot can be emulated by our robot with a push

behavior (as this will roll off the ball from the table). In the

current study, we augmented this with a general interactive

imitation learning system that naturally engages the tutor in

motionese, in which the tutor demarcation was used to chop

a complex action into simpler pieces that can be handled by

goal emulation. This allows the robot to perform tasks that

otherwise would be impossible to be executed via simple

goal emulation.

To enable such functionality, first an interactive system

is created, where the robot tracks the movement of objects

and tries to segment parts of the dynamic scene in terms of

changes in its affordance space. Once the robot can perceive

and hence represent some part of the demonstrated action

in terms of changes in its percept, it can reproduce that

part with goal emulation. Chaining of such segmentation

and goal level imitation then enables the robot to imitate the

observed action. This may not always be the exact copy of

the demonstrators action, but may get closer to it if the tutor

is not satisfied with the imitation of the robot and introduces

more motionese markers to help the robot.

As a next step, we plan to recruit naive subjects without

any prior knowledge about this research as tutors. We pos-

tulate that the developmental system can naturally engage

the naive tutors to modify their movements so as to make

the robot understand their actions as the motionese theory

predicts. In order to achieve such performance, we can

extend the current system by including other motionese cues

such as repeating behavior, and allowing the robot directly

signal the tutor that he understood a specific portion of the

demonstrated action.

This framework should be extended in different directions

for better and more natural skill acquisition. For a truly

developmental system, the imitated action sequences should

be integrated to behavior primitive space of the robot in a

seemless way. The robot also needs to give some feedback

during probably initially failing demonstration attempts of

naive tutors so that the tutors can easily learn how the

robot learns to imitate. One other limitation is that our

current system sees the world as changes happening on the

object percept. So it cannot really do imitation of an action

which does not include objects. The relation between object-

based and object-free imitation mechanisms is still an open

question and promising direction for the future.
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 

Abstract— This paper proposes a control architecture for a 

socially situated robot by combining motion recognition and 

generalization, intention recognition and cognitive control. This 

architecture provides a method for a humanoid robot to 

generalize common features of human motions through 

observation and store them in the long-term memory, to 

recognize a particular human motion to estimate his/her 

intention and modify its own arm movement.  Several 

experiments were carried out on a humanoid robot to 

demonstrate the proof of concept. 

I. INTRODUCTION 

In the future, it is expected that humanoid robots will be 
deployed increasingly at work, in homes and public spaces to 
assist humans in a variety of tasks. For socially situated robots, 
it will be necessary to be able to recognize and imitate human 
behaviors by understanding human intentions and modifying 
their own behaviors accordingly.  Recent advances in the 
cognitive neuroscience have considerably enlarged our 
understanding of social cognition of human actions [1]. The 
actions we perform are usually driven by prior intention. For 
example, a person grasping a cup may grasp it in order to drink 
from it, or to hand it to another person. Is it then possible to 
anticipate what he/she is going to do next from the way he/she 
reaches and grasps the cup? It is argued by some that it is 
possible to understand the intentions of others by simply 
observing their movements [2] [3], while others are more 
skeptical [1]. In this paper, we will focus on robotic behavior 
modifications based on social cognition using intention 
recognition, robotic imitation learning, and cognitive control.   

The study of robotic imitation learning meantime attempts 
to enable robots to learn low-level behaviors from 
demonstration and to apply them in different situations [3] [4]. 
Current imitation learning methods mimic human motion 
trajectories [5] and couple them into sequences [6] for robots 
to perform simple tasks such as reaching or grasping. 
Recently, we proposed a framework for imitation learning that 
uses a number of techniques to enable a robot to perform 
learned tasks in situations that differ, to a small extent, from 
those in which it was learned [7].  

This paper describes a robotic behavior modification 
technique based on human intention recognition, imitation 
learning, and cognitive control. The rest of the paper is 
organized as follows: Section II summarizes related work on 
imitation learning, cognitive control, and intention 
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recognition. Section III proposes a robotic behavior 
modification framework based on situation awareness. 
Section IV describes experiments performed. Section V 
analyzes the experimental results and summarizes the 
contributions of this paper. 

II. RELATED WORK 

A. Imitation Learning 

Current research on imitation learning can be divided into 

two categories [8]:  One tries to train robots to replicate motion 

dynamics [5], and the other is to train robots to learn action 

primitives and higher-level behaviors [6] [9]. 

Most researchers in the imitation learning community have 

worked on how to adaptively generate motions which are 

similar to demonstrations. The Dynamic Movement 

Primitives (DMP)-based method is well accepted as a general 

behavior generation method [5]. In the DMP-based imitation 

learning, the robot learns a non-linear model through a 

regression process or by trials. Optimal control [10] [11], and 

Reinforcement Learning [12] are typically applied to train the 

robots. Others include the “Lagrange method” that  tries to 

minimize the error between the demonstration and the 

generated trajectory in both the original data space and the 

low-dimensional latent space [8] [13] [14].  

Recent applications include grasping [11] [15] [16] [17], 
and manipulation [18]. 

B. Cognitive Control 

Cognitive (or executive) control is a term borrowed from 

cognitive neuroscience, and refers to processes “that allow 

information processing and behavior to vary adaptively from 

moment to moment depending on current goals, rather than 

remaining rigid and inflexible.” [19]. Cognitive control 

processes include a broad class of mental operations 

including context understanding and goal representation, and 

strategic processes such as attention allocation and high-level 

stimulus-response mapping [19]. Application of cognitive 

control to robotics was first proposed by Kawamura and 

Gordon in 2006 [20]. In the subsequent years, a variety of 

robotic architectures have been proposed. 

Cognitive control regulates robot behaviors through analysis 

of situational information such as attention  and intention 

[24] [25].  

C. Intention Recognition 

The actions we perform in daily life are usually driven by 
either an explicit or a hidden intention.  In [2], Becchio et al 
argued that understanding others’ intentions by observing 
their arm movements is possible. In [24], Sartori et al studied 
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how recognition of the intentions of a human observer can 
influence and modulate the actions of the human performing a 
task. Researchers in human-robot cooperation used a number 
of statistical techniques to recognize human intention. For 
example, Aaro and Kragic [25] and Kelley et al [26] used 
Hidden Markov Models to recognize human intention by a 
robotic agent.  Schrempf et al. used dynamic Bayesian 
Networks in so-called proactive human-robot cooperation 
[27]. 

In our cognitive control system, we intend to use a social 
cue such as extending an open hand to recognize the intention 
of a human observer to modulate the behavior of a robot.   In 
our experiments we will consider three basic possibilities:  no 
detectable action by the human, an action that is detected but is 
not understood to convey any type of social cue (extending a 
closed hand) and a detected action that does convey a social 
cue (extending an open hand).  Clearly, for sophisticated 
activity the robot would need to detect and understand a 
potentially large number of actions and social cues, however, 
for the purposes of illustrating and demonstrating the 
combination of intention recognition and cognitive control we 
only require a basic set of actions and cues. 

III. METHODOLOGY 

The modular approach adapted in this paper is based on the 
cognitive control architecture developed in our lab [21].  

 

Fig.1 Cognitive Robot Control Architecture 

Situational Change/
Awareness

 

Fig.2 Cognitive Control for Social Robots 

It is shown in Fig.1. The cognitive control portion as 
applied to social robots is shown in Fig. 2. Key modules for 
robot behavior learning and modification are shown in Fig. 3.  

In the rest of this section, key modules are described in 
detail. 

 

Fig.3 Robot Behavior Learning and Modification System 

A.  Perception/Attention Module 

The system uses observed social behaviors as the basis for 
generating motions. First the robot observes human motions in 
the situated social setting. Observed motion trajectories and 
task-relevant information (e.g., the distances between the 
end-effector and a target object in a manipulation task) are 
recorded for modeling and analysis. Observed motion data is 
recorded with time-stamped vectors.  

In our system, a Kinect sensor was used to record the arm 
trajectory and the position and orientation of the hand of a 
human.  In the learning stage, various motions of the right 
arm/hand of a human is recorded and used by the robot to 
generalize and learn the observed behaviors.  

For the purposes of the concept of proof, it was decided to 
use a relatively basic perception and attention model to 
illustrate the integration of the intention (i.e. opening of a 
hand) recognition into a cognitive control framework.  The 
robotic agent monitors, perceives and attends to three different 
situations.  In the first, the human observer is not moving his 
arm, thus no intentional gesture is present.  In the second, the 
observer is moving his arm with his hand closed, so the motion 
does not convey any intention.  Finally, in the third situation, 
the observer is moving his arm and opens his hand signaling 
about the intention of the observer.  

B. Motion and Activity Recognition  

Tasks humans perform in social settings comprise a set of 
low-level motions. Different tasks require different sets of 
motions. Due to measurement errors, noise in the 
environment and inconsistencies in human in performance of 
the same task, the obtained motion trajectories will vary. 
There may be, however, common features within the 
demonstrations. An appropriate analysis and comparison of 
observed tasks may find common features hidden in observed 
motion trajectories and thereby learn motions and behaviors 
from demonstrations.  In Section IV reaching and pushing 
behaviors are learned in order to perform the experiments. 

Our proposed imitation learning method considers 
motions to be attribute-based.  That is, common internal 
features found for observed behaviors are represented as a set 
of attributes. A labeled or named motion or behavior can be 
described in terms of three attributes: (1) the requisite 
preconditions or task-specific environmental conditions for 
execution, (2) internal constraints which confine the behavior 
during execution, and (3) post results that characterize the 
outcome of a behavior: 

                                                                (1) 

At the behavior generalization stage, the goal is to find the 
most common features for the pre-conditions, internal 
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constraints and post results respectively. The design of the 
required common features is flexible, and researchers can 
define their own features.  

A group of features are predefined and stored in the 
memory system. We define three groups of features for 
pre-conditions, internal constraints and post results 
respectively: 

                           (2) 

where      contains a list of    pre-conditions,            

contains   internal constraints, and        contains   post 

results. 

A sample definition table of categories of pre-conditions, 
internal constraints and post results are pre-defined as shown 
in Table 1. The goal of the behavior generalization stage is to 
find suitable conditions, constraints and results for each 
behavior from demonstrations. 

Table 1 Pre-Definition of Pre-Conditions, Internal Constraints and Post 
Results 

Pre-Conditions Internal Constraints Post Results 

0.Unnecessary 0.Unnecessary 0.Unnecessary 

1.Minimize the distance 
between the hand and the 

target position 

1.Keep similar dynamics 1.Minimize the 
distance between 
the hand and the 

object-related 
position 

2.Keep the distance 
between the hand and the 

target position 

2. Generate the same 
trajectory 

2.Keep the 
distance between 
the hand and the 
target position 

3.Object in hand 3.Keep the distance 
between the hand and the 

obstacle larger than a 
predefined value 

3.Grasp the object 

4. Object not in hand  4.Release the 
object 

From the demonstrations, we used the criterions in Table 2 
and Table 3 to find the most common feature for 
pre-conditions, post results and internal constraints. 

Table 2 Criterions of Pre-Constraints and Post Results 

Pre-Constraints/Post Results Criterions 

0.Unnecessary None 

1.Minimize the distance between the 
hand and the target position 

The distance between the hand and 
the target position is smaller than a 

threshold value 

2.Keep the distance between the 
hand and the target position 

The distance between the hand and 
the target position is larger than a 

threshold value 

3.Object in hand The closed signal from the gripper 
and the distance between the hand 

and the target position is smaller than 
a threshold value 

4. Object not in hand The opened signal from the gripper 

 

In Table 2, for feature 1 and 2, the distance   between the 
hand and the target position is computed directly using the 
Euclidean distance and then normalized to probability values. 

    
 

       

              (3) 

    
       

         (4) 

where    and    are normalization parameters. 

Features 3 and 4 are determined by the measurements of 
control signal from the grippers. 

Table 3 Criterions of Internal Constraints 

Internal Constraints Criterions 

1.Keep similar dynamics DTW similarities between 
normalized motion trajectories are 

larger than a threshold value 

2.Generate the same trajectories DTW similarities between motion 
trajectories are larger than a 

threshold value 

For feature 1 in Table 3, Dynamic Time Warping (DTW) 

[28] distances between two demonstrations are computed 

first. Then we have a matrix to describe the distances. 

     

 
 
 
 
      

   

  
 

    
         

   

    
         

   

   
  
  

 
     

     

   
 
 
 
 

  (5) 

where   is the number of demonstrations.  The elements of 

the first row are normalized using the following equation: 

     
     

 
    

   
 

         (6) 

Then the normalized variance of the first row of       is 

computed as the probability score of this feature. 

After the behavior generalization stage, a behavior graph 
can be constructed based on the generalized features to 
describe the relationships among these generalized behaviors 
(please see the Appendix). All learned behaviors are 
represented as vertexes in a behavior graph, and the edges are 
defined by matching the pre-condition of a behavior and the 
post result of another behavior. If the robot finds that the 
pre-condition of a behavior and the post result of another 
behavior match, an edge is added.  

C. Intention Recognition Module 

The Intention Recognition Module recognizes the 
intention of the human in the environment and sends the 
recognition results to the Cognitive Control Module.  

Using the hand gesturing images stored in the LTM, if the 
hand is closed, the robot ignores it and continues to reach the 
target object; if the hand is opened, the robot determines that 
the human wants to greet the robot and modify its motion to 
greet the human. 

The recognized positions of the fingers are represented as: 

                    (7) 

where           is the position value of the     finger. 
The position of the center of the palm is recorded as   . 
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The distances between the fingers and the palm are 
computed as: 

                  (8) 

where    is the Euclid distance. 

A Gaussian model is constructed from the vector of 
distances               .  If the mean of the Gaussian 
model µ is larger than a chosen threshold value, the hand is 
considered to be opened; if it is smaller than this threshold 
value, the hand is considered to be closed. Cerezo’s method 
[29] is used to recognize the hand gesture of the human. For 
specific technical details, please refer to Cerezo’s paper [29]. 

D. Cognitive Control Module 

The robot switches goals or tasks according to the current 
situation and the results of human intention recognition.  By 
incorporating the sensory information, recognition results, and 
the stored knowledge in the LTM, robot makes decisions 
using situational affordances [30]. The following rules 
illustrate how the CEA will choose appropriate social 
behavior: 

Given a social setting the robot is in, the CEA looks for a 
social cue in terms of human behavior and related parameters. 
Then the CEA searches the LTM to find whether the behavior 
has been learned. The input of the searching is the name of the 
required behavior, and the output is a returned Boolean value. 
Based on the Boolean value, the CEA uses the following rules: 

If the search result is false, then switch to the learning 
stage; 

If the search result is true, then switch to behavior 
generation; 

If the behavior sequence generation is completed, then 
switch to motion trajectory generation; 

If the motion trajectory generation is completed, then 
switch to execution; 

If the recognized intention is stored in the LTM, then 
switch to the intention related task. 

The first two rules are used to route the current task to 
behavior learning or generation based on the searching results 
in the LTM. Through behavior learning, robot learns the 
motions and the semantic names of the behaviors, and it 
generalizes the common features of the observed behaviors. 
The third and fourth rules are related to generating motion 
trajectories to complete the required task. The fifth rule is used 
to switch tasks when the human intention has been recognized 
and found in the LTM. 

IV. EXPERIMENTS 

In this section, we use three experiments to validate our 
proposed system. Basically, we want to demonstrate that our 
robot control system using perception/attention, intention 
recognition and cognitive control modules are capable of 
replicating results similar to Sartori’s action modification 
experiments [24] using three scenarios: In the first, the human 
bystander is simply standing still, and thus no potential 
intentional gesture motion is present. In the second, the 
bystander moves his/her arm but the robot does not recognize 
any intention stored in the long-term memory. Finally, in the 

third scenario, the bystander is opening his/her hand and this 
particular arm motion conveys information about the intention 
of the bystander from the past experience of the robot. Thus 
the robot changes its behavior and reaches to the bystander. 

A humanoid robot, named ISAC, is asked to reach a box 
on a table to its left or right. Reaching and pushing behaviors 
are taught by human teachers for ISAC to generalize and are 
stored in the Long-Term Memory (LTM). 

In the first experiment, a human simply stands in front of 
ISAC. Then ISAC sticks to its original goal of reaching a box 
on the table.  

In the second experiment, the human puts a closed hand in 
front of ISAC when ISAC tries to reach the box. ISAC 
however ignore this signal that is not stored in the LTM and 
sticks to its original goal of reaching a box on the table. 

In the third experiment, the human puts an open hand in 
front of ISAC when ISAC tries to reach the box. Then ISAC 
recognizes the intention of the human from its past experience 
stored in the LTM, i.e., he/she wants to shake hands with the 
robot. Then ISAC switches the task goal and extends the hand 
to the human. 

 

Fig. 4 Cognitive Control Framework 

Fig.4 displays the cognitive control framework used in our 

method. 

 

Fig.5 Behavior Learning and Generation Framework 

Fig.5 displays the behavior learning, generation, and 

modification system in our method. It is divided into the 

following main parts: behavior acquisition, behavior 

segmentation, behavior generalization, behavior 

representation, and behavior generation. The “Demonstration 

Acquisition” block records the motion trajectories of the 

hands of human teachers. The “Segmentation” block 

segments the observed behavior sequences into several basic 

behaviors. The “Goal-Oriented Behavior Generalization” 

block generalizes the common features of demonstrated 

motions. The “Behavior Representation” stores the learned 

knowledge. In the generation stage, given a new human 

command, the robot generates behavior sequences composed 

of basic behaviors. Behaviors are modified according to 

current situation. In this paper, we aim to integrate the two 

frameworks shown in Fig.4 and Fig.5.  
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Fig.6 Integration of Behavior Acquisition 

 

Fig.7 Integration of Behavior Segmentation and Generalization 

 

Fig.8 Integration of Behavior Representation 

 

Fig.9 Integration of Behavior Generation 

In Fig.6 the Behavior Acquisition of the imitation learning 

framework is integrated with the Sensor. In Fig.7, the 

Behavior Segmentation and the Behavior Generalization are 

integrated with the CEA. In Fig.8, the Behavior 

Representation is integrated with the LTM. In Fig.9, the 

Behavior Generation is integrated with the 

Perception/Attention, the STM, the CEA, the IRS and the 

Executor. 

A. Experiment 1 

 
Fig. 10 Results of Experiment 1 

Fig. 10 displays the simulation results of experiment 1. In 
this experiment, the human does not interrupt the action of 
ISAC and ISAC sticks to its original task goal.  

B. Experiment 2 

Fig. 11 displays the simulation results of experiment 2. 

 

 

Fig.11 Results of Experiment 2 
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In this experiment, the human puts his hand in front of 
ISAC when ISAC tries to reach the box. In Fig.5, the hand is 
closed which means that the human does not want to have a 
handshake with ISAC. Then ISAC sticks to its original task 
goal. 

B. Experiment 3 

Fig.12-a and Fig.12-b display the simulation results of 
experiment 3. 

 

Fig.12-a Results of Experiment 3 (Initial Task) 

 

Fig.12-b Results of Experiment 3 (Switched Task) 

In this experiment, the human puts his hand in front of 
ISAC when ISAC tries to reach the box. In the upper picture, 
the position of the hand of the human is labeled as a red 
sphere. The contour of the hand of the human has been 
recognized very well. Since the hand is opened, ISAC 
considers that the human wants to have a handshake. Then 
ISAC switches the task goal to reach the hand of the human. 

From the results of the three experiments, we have 
demonstrated that our cognitive control architecture can be 
used by a robot to modify its behavior in social settings if the 
robot can recognize the intention of the human by observing 
motions. 

V. CONCLUSION AND FUTURE WORK 

 

This paper proposed to integrate imitation learning and 

cognitive control for a robot to recognize the intention of 

human actions in social settings and make appropriate 

decisions to modify its behaviors. In [24], Sartori et. al. 

showed that an unexpected social request by another human 

being sometime overrides preplanned actions and modulates 

his/her the action control system. In this paper, we have 

sought to demonstrate this type of behavior modulation using 

imitation learning [7] and cognitive control framework based 

on our previous work [21]. The experimental results 

demonstrate that using our integrated cognitive robot 

architecture, a robot can modulate preplanned tasks based on 

experience deterministically. 

In this paper, ISAC only recognizes one simple intention of 

the human, i.e. opening a hand and extending the arm. In the 

future, we need to design several intention recognition 

methods and store the recognized intention in a hierarchical 

way in the long-term memory. Another important aspect of 

the intention recognition though movements is the method in 

which this intentional information is encoded in the reaching 

movement and how it may be recognized by the robot. While 

experiments described in [2] demonstrate that human 

observers are able to recognize this information, it is not clear 

exactly how the humans are performing this recognition. 

Additionally, simple rule-based deterministic models of 

intention and action are not sufficient for more complex tasks 

and social situations. Probabilistic models are needed such as 

models involving Bayesian networks, partially observable 

Markov decision processes or even hidden Markov models. 

Such models support the evolution, over time, of the 

probability of the subject’s intention given the observations 

up to the present. 

APPENDIX 

 
An Example of Behavior Graph 

IROS-DevSoR 2013 Proceedings of International Workshop on Developmental Social Robotics

20



  

Some behaviors, being some kind of default or 

self-motivated behavior that the robot interrupts if it is given a 

task, are connected to “Starting”. At that time it starts another 

task. 
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Feasibility of SAR Approaches - Helping Children with Learning Tasks

Elena Corina Grigore1 and Brian Scassellati2

Abstract— This paper gives an overview of two projects using
a socially assistive robotics (SAR) approach to teach children
about nutrition and problem solving, respectively. The first
project describes a three-week long study designed for children
aged 5 - 8 to interact with a robot that teaches them about
making healthy food choices. The study is presented in detail
in [1]. This paper gives an overview of the project, describing
the results indicating that the children were engaged in a six-
session interaction with a robot, that they took less time to
respond to the robot towards the end of the study, and that
the children had a very positive impression of the robot both
before, and after the study. The results show promise for the
feasibility of using SAR in one-on-one long-term interactions
with children. The second project describes the feasibility of
using a robot as part of a problem-solving activity for children.
The project is ongoing, and so the paper describes the protocol,
and some expected results.

I. INTRODUCTION
Learning through an interactive and innovative way can

be achieved by allowing children to engage in one-on-one
interactions with socially expressive robots. Socially assistive
robotics (SAR) has been identified as a research area that
focuses on helping people through social interaction, rather
than any other type of interaction [2], [3]. The two projects
we present explore how well a SAR approach is capable of
keeping children engaged with the task they are given. The
first study explores longer-term exposure to a robot, while
the second study focuses more on integrating the robot as
part of an already well-established process of teaching.

II. BACKGROUND
Techniques that use widely available technology can be

used for the purposes of helping children with various
learning tasks. The question, however, is how engaged are
the children throughout the learning task and how much
better can we do with a system that employs human-robot
interaction (HRI) in order to constantly keep children focused
on the task? Literature on the topic shows that HRI within
a SAR approach can be beneficial for learning. Leyzberg
et al. showed that the time it takes people to solve a
puzzle decreases when they receive the same hints in the
embodiment, i. e. the robot is physically present, versus
the on-screen condition [4]. Kidd and Breazeal show that
people maintain their diet and exercise habits for longer
when guided through the process by a socially assistive robot
than when employing other types of intervention, namely a
standalone computer method and a paper log method [5].

In our first project, we employ SAR to teach children
about nutrition and to inform them about how they can

1
elena.corina.grigore@yale.edu

2
scaz@cs.yale.edu, http://scazlab.yale.edu

make healthy food choices. Our topic choice stems from
the importance of mitigating childhood obesity: ”Obesity
among children and adolescents has been shown not only
to lead to a higher risk of being overweight in adulthood
[6], but also of numerous diseases later in life, including
high cholesterol and triglycerides, hypertension, and type
2 diabetes [7]. Educating children about healthy food and
beverage choices, and motivating them to make healthier
choices, can help to lower rates of obesity [8].” [1, p. 1]

Our second project is geared towards teaching children
how to problem-solve. The data to be obtained in this study
will be used to later inform the development of a study
involving children clinically referred for behavioral difficul-
ties. Statistics show that 50% of the American population
meets criteria for a diagnosable mental disorder at some
point in their lives, while in a given year, one in four
Americans meets criteria for a such a condition [9], [10].
Most people in this category, however, do not receive any
type of treatment [11]. As a consequence, various treatments
have been suggested, including some novel models (e.g., task
shifting, best-buy interventions; see [12]). Social robots can
be used within various such types of therapy sessions to keep
patients engaged in the interaction and focused on the task.

III. NUTRITION STUDY
A. Overview and Platform

The study focused on nutrition investigated the use of a
robotic platform to teach children about healthy food choices.
The study is part of a multi-site collaboration between
Yale University, University of Southern California, the Mas-
sachusetts Institute of Technology, and Standford University
under the umbrella of an extensive project with the overar-
ching goal of developing robots that interact autonomously
with children, helping them with various learning tasks. 1 We
ran the study at two different sites, Yale and USC, using a
Wizard-Of-Oz system, with a teleoperator choosing the rele-
vant dialogue item for the children’s answers. The interaction
flow, however, was autonomous, and not controlled by the
teleoperator. Our goal for the future is to move towards a
fully autonomous platform.

The platform we used during this study is a robot called
DragonBot, a socially expressive dragon-like robot with five
degrees of freedom, developed at MIT [13], which can be
seen in fig. 1. USC designed the skin in collaboration with
an expert puppeteer to make the creature as appealing as

1This study was ran under the Expedition on Making Socially Assistive
Robots funded by the NSF. We thank everyone from Yale University,
University of Southern California, MIT, and Standford University involved
in developing hardware and software for this study, and in running it.
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Fig. 1. Participants’ view of DragonBot.
possible to children. The robot has four different sized wings
to allow it to ”grow” from week to week, as it gets stronger
and stronger, as an effect of the children choosing healthy
food items for it to eat.

In order to keep the children engaged in the interaction,
we created a backstory that spans across the entire course of
the interaction. The story is that the robot is about to take
part in a dragon race, which he very much desires to win. In
order for the robot to win the race, it must become strong and
fast, and that can only be accomplished by eating healthy.
Children can choose items from a series of fake foods to feed
the robot every week. They are thus drawn into this game of
helping the robot become stronger each week so that it can
ultimately win the big race.

B. Design of the Study
The study spans across three weeks, each week covering

a different food topic (e. g. lunchbox, snacks, meals). Each
week consists of two one-on-one 10-15 minute sessions.
During the first session, the robot acts as an expert, conveying
information to the children about the foods presented that
week (we call this the Expert Session or ES). During the
second session, the robot acts more as a peer, asking the
child to make food selections to help it become strong and
fast (we call this the Cooperative Session or CS).

C. Data Collected
We collected several types of electronic data, including

information about the teleoperator’s dialogue choices, as
well as video and audio data. In order to measure the
level of engagement of the children with the robot, we
administered three different questionnaires to the children.
The first two types were interaction questionnaires, one that
included questions about the perceived value or usefulness of
the interaction, and one that included questions about how the
children perceived the social presence of the robot (used to
quantify the effectiveness of the robot’s social capabilities).
These questionnaires were administered twice, once after
the first interaction, and once after the final one. The third
questionnaire asked the children to rate the robot’s features,
such as bad/good, cuddly/not cuddly, etc. It was administered
before the intervention, but after a brief group introduction
to the robot, and after the intervention. We also collected
information about child temperament by asking the parents
to fill out a Child Behavior Questionnaire. This questionnaire
contains a 4-point Likert-type scale asking the parents to rate
their children’s behavior and personality.

D. Results and Conclusions
This section gives an overview of the multiple aspects of

the interaction we considered when analyzing the data. These
results are presented in detail in [1].

Based on the questionnaire asking children to rate the
robot’s features, we found that children in the study had an
extremely positive perception of the robot, both before the
intervention, and after the final session. Our next significant
result was that children engaged with the robot and immersed
themselves in the story. This is suggested by the decrease in
the mean response time (time it took a child to respond to
the robot’s prompts) from day 1 (4.3 seconds on average)
to day 6 (3.5 seconds on average). Due to the short period
of the intervention, we found limited evidence showing that
children learned about nutrition over the course of the three
weeks. Children do show more nutritional knowledge, but
this might also be due to the increase in cognitive demands
related to making food choices over the weeks. In fact,
children took longer to choose food items as the intervention
progressed, suggesting they become more thoughtful and
thorough in giving their answers over time.

More results indicated that the children engaged more and
more with the robot over time since their type of responses
changed from week to week: they started off with simple
answers (e. g. ”Yes”, ”No”, ”Hmm”), and continued to use
expanded answers (”This is what I fix for dinner...”), and even
relational answers (suggesting the children were beginning
to relate to the robot, e. g. ”You said you didn’t like it!”).
We also did not find a link between child temperament and
social interaction with the robot, meaning that children with
diverse temperaments could develop a relationship with a
robot.

IV. PROBLEM SOLVING SKILLS STUDY
A. Overview and Platform

The problem-solving skills study is an undergoing project
in collaboration with the Yale Parenting Center [14]. The
ultimate goal of this project is to integrate a robotic platform
into a problem-solving skills training process for children
clinically referred for behavioral difficulties. The initial study
aims to use the same robotic platform described in the
previous study (DragonBot) for a single session within the
problem-solving skills training method with children who are
not clinically referred.

B. Design of the Study
Children who participate in the Problem-Solving Skills

Training (PSST) program at the Yale Parenting Center go
through a 12-session process to learn ways to cope with
real-world situations that may prove difficult for them. These
sessions focus on a 5-step method of how to appropriately
deal with an everyday problem a child may encounter. The
five steps are designed to help children come up with differ-
ent potential behavior options, evaluate the consequences of
each, and make a decision based on this.

Children become highly engaged and motivated while
interacting with robots. Based on this observation, we are
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integrating DragonBot as part of this process, so that children
can learn the steps through interacting with a robot. We
change the above-described design to be able to control
for the multitude of variables associated with a 12-session
process and to evaluate the feasibility of using such a
technique.

All participants will initially take part in a 30-minute
PSST session with a member of the study staff, focusing on
teaching the child a series of three problem-solving steps, a
subset of the steps used for children with disruptive behavior
problems [15]. After having completed this training session,
the participants will either be assigned to the practice-with-
DragonBot or the practice-alone condition. Children in the
former condition will be introduced to DragonBot and told
to ”teach” the robot the same problem-solving steps they
just learned. Similarly to the previous study, DragonBot has
a backstory of being a baby dragon that needs help with
problem-solving. Through this teaching task, the children
will be able to practice working with the steps alongside a
robot by creating a peer-to-peer relationship with it. Children
in the latter condition will be instructed to review the steps
that they just learned on their own.

C. Data to be Collected

We are interested in assessing how well-suited the use of
a robotic platform in such a context is, and in assessing the
acceptability of this kind of treatment.

Children will complete different questionnaires, based on
the condition they are assigned to. Children assigned to
the robot condition will complete the Child Reaction to the
Robot Interview, to assess their reaction to the robot (includ-
ing questions on likability, animacy, physical appearance, and
utility), and a Child-Robot Alliance Interview (to assess the
child’s relationship with the robot). Children assigned to the
practice-alone condition will complete the Child Reaction to
the Practice Task Interview, containing questions designed
to obtain the children’s feedback about the task. All children
will complete the Child Version of the Treatment Evaluation
Inventory, containing questions to assess how acceptable the
treatment is from the perspective of the child.

Parents will be given the opportunity of watching the
sessions their children are participating in, through a video
monitor system. After having observed the sessions, the
parents will be asked to complete the Child Behavior and
Temperament Questionnaire. This data will help in later
analyzing whether temperament is linked to the type of
interaction we will observe between the child and the robot.
Parents will also complete the Parent Version of the Treat-
ment Evaluation Inventory to assess whether they view the
treatment as acceptable.

D. Predicted Results

We predict that children in the robot condition will be
more engaged in the task than children in the practice-alone
condition. We also predict that the children interacting with
DragonBot will be highly engaged in the task and in teaching

the robot the steps, leading to their better understanding of
what they had previously learned.

V. CONCLUSIONS
This paper gave the overview of two projects using HRI

within a SAR approach to help children with learning tasks.
The projects show the feasibility of using such approaches
given the high level of engagement children demonstrated
throughout one of the presented studies and the expected
level of interaction as part of the ongoing study. This encour-
ages us to continue using such techniques and to continue
exploring the benefits of using interactive ways of helping
children gain educational knowledge on different topics.

REFERENCES

[1] E. Short, K. Swift-Spong, J. Greczek, A. Ramachandran, A. Litoiu,
and E. C. Grigore, “How to train your dragonbot - socially assistive
robots for teaching children about nutrition through play,” 2013.

[2] D. Feil-Seifer and M. J. Mataric, “Defining socially assistive robotics,”
in Rehabilitation Robotics, 2005. ICORR 2005. 9th International
Conference on, 2005, pp. 465–468.

[3] A. Tapus, M. Mataric, and B. Scasselati, “Socially assistive robotics
[grand challenges of robotics],” Robotics Automation Magazine, IEEE,
vol. 14, no. 1, pp. 35–42, 2007.

[4] D. Leyzberg, S. Spaulding, M. Toneva, and B. Scassellati, “The
physical presence of a robot tutor increases cognitive learning gains,”
in Proc. of the Annual Meeting of the Cognitive Science Society
(CogSci), no. 1, 2012, pp. 1882–1887.

[5] C. Kidd and C. Breazeal, “Robots at home: Understanding long-term
human-robot interaction,” in Intelligent Robots and Systems, 2008.
IROS 2008. IEEE/RSJ International Conference on, 2008, pp. 3230–
3235.

[6] A. S. Singh, C. Mulder, J. W. R. Twisk, W. V. Mechelen, and
M. J. M. Chinapaw, “racking of childhood overweight into adulthood:
a systematic review of the literature.” Obesity Reviews, no. 9, pp. 474–
488, 2008.

[7] D. S. Freedman, W. H. Dietz, S. R. Srinivasan, and G. S. Berenson,
“The relation of overweight to cardiovascular risk factors among
children and adolescents: The bogalusa heart study,” Pediatrics, vol.
103, no. 6, pp. 1175–1182, 1999.

[8] D. Spruijt-Metz, “Etiology, treatment, and prevention of obesity in
childhood and adolescence: A decade in review,” Journal of Research
on Adolescence, vol. 21, no. 1, pp. 129–152, 2011.

[9] R. C. Kessler and P. S. Wang, “The descriptive epidemiology of
commonly occurring mental disorders in the united states*,” Annu.
Rev. Public Health, vol. 29, pp. 115–129, 2008.

[10] R. Kessler, S. Aguilar-Gaxiola, J. Alonso, S. Chatterji, S. Lee,
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Abstract— During an unannounced encounter, we study the 
appreciation of the robot’s sociable character (measured via the 
answers to a questionnaire) and the motion (arm and head 
movement frequency and smoothness using IMU sensors) of two 
humans interacting with a proactive humanoid (NAO). We also 
investigate the dependencies between the participants’ response 
to the robot’s non-verbal actions and their perception of its 
sociability. Our results show positive correlations between 
finding the robot sociable and responding adequately to its 
engaging gestures on one hand, and between finding the robot 
sociable and the frequency and jerk of the human hand and 
head movements. Therefore, the social dimension attributed to 
the robot seems to be a major component of the human 
willingness to interact, as well as of the general success of the 
interaction. Furthermore, these results suggest that it might be 
possible to infer human appreciation of a robot and human 
involvement in an interaction, using their measurable physical 
movements, thus opening up to interesting applications in HRI 
from the robot control design point of view. 

I. INTRODUCTION 

Robots are gradually appearing in our society and their 
presence in public and private spaces is still a new experience 
for humans. The variety in robots, in humans and in possible 
encounters makes the study of human-robot interaction (HRI) 
more complex and at the same time more expressly needed. 
Robots are expected to interact with humans in an efficient 
and natural way: intuitive and easy exchanges are the two 
main characteristics defining the sociability of artificial agents 
[1]. Social interaction and robot acceptability are amongst the 
most important concepts explored in social robotics 
nowadays. Although frequently used by the scientific 
community, these expressions refer in reality to complex 
psychological and social concepts difficult to precisely define 
[2], [3]. In addition the understanding of these concepts is 
inter-cultural and inter-personal [4], [5]. Acceptability or user 
acceptance is usually defined as the “demonstrable 
willingness within a user group to employ information 
technology for the task it is designed to support” [6]. Rogers 
[7] describes an innovation diffusion model and theory, based 
on a technology’s five characteristics, which determine its 
diffusion and its acceptance. Compatibility, which refers to 
consistency with social practices and norms among users, is 
one of these five characteristics. 
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The way a ”socially adapted” interaction builds up and 
the way social acceptance and social well-being occur are 
difficult to comprehend in a human-human interaction, 
knowing that what might be acceptable or satisfying for one 
individual is likely to be differently perceived by another. 
Few social experiences happen without experiencing some 
ambiguity or ambivalence, especially in a first encounter. 
When it comes to human-robot interaction, questions of social 
acceptance and of ”intuitive” and ”successful” interactions 
seem more crucial since the difference between humans and 
robots is fundamental and ontological. The quality of such 
interactions depends strongly on the robot: not only on its 
appearance, but also on its abilities, features and autonomy 
degree. The interaction quality depends also on the humans’ 
perception and appreciation of the robot and their readiness to 
adapt to it, thus taking its abilities and limitations into account 
and compensating for them in order for the interaction to 
happen [8]. Additionally, the degree to which a human-like 
nature for a robot is needed is not yet understood to a 
sufficient degree and studies that focus on such a human-like 
nature are very rare [8]. Most studies [9], [10] agree on the 
fact that further research is needed to better understand and 
determine which aspects and degrees of similarity and 
likeability are required in order to enable more empathic and 
intuitive HRI.  

In the present paper, we aim at understanding how a first 
encounter builds up to a successful or unsuccessful HRI, 
particularly in relation to the participant’s perception and 
evaluation of the humanoid robot partner’s sociability during 
the encounter. We are also interested in the way the 
evaluation and appreciation of the robot’s sociable character 
might be associated to the participant’s measurable arm and 
head motions. In a previous study [11] we showed that the 
more the robot was found sociable by the human partner, the 
more interacting with it was perceived as familiar, secure and 
comfortable. Our results also proved politeness and 
sociability of the robot to be highly and positively correlated, 
as well as showed non-verbal social gestures (greetings) 
performed by the robot to be efficient in promoting its 
sociable character [11].  

Non-verbal communication has the ability to replace verbal 
language to a large extent, especially when it is about 
communicating simple information, giving social cues or 
conveying emotions and intentions [12]. The importance of 
building communicative robots that are able to generate social 
cues through gesture has been showed by some recent studies 
such as [13]. In [13] authors were also able to underline the 
positive effects of gestures during HRI by showing that 
people will have a more meaningful social interaction with a 
robot and enjoy it more when the robot shows gestures than 
when it does not. Also, people will report a greater level of 

Human motion measures and adequacy of the response in relation to 
the robot’s sociable character. 
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engagement with a robot when the robot shows gestures 
during an interaction than when it does not [13], [14]. [15] 
showed meaningful correlation between certain body 
movements (such as eye contact and synchronized arm 
movement) of humans interacting with a robot and their 
subjective evaluations of this robot, thus suggesting that 
humans make evaluations based on their body movements. 
[15] also found that when a human highly evaluates the robot, 
the human behaves cooperatively with it, which will further 
improve its evaluation. 

In [16] we showed that the more humans found the robot to 
be sociable, the higher was the intensity of their arm motion 
when greeting it back goodbye. In the present study, we 
hypothesize that the participants’ movement frequency and 
smoothness are directly and strongly associated with their 
appreciation of the robot’s sociable character and that the 
more sociable the robot seems to them, the more they tend to 
successfully respond to its gestures: (H1) The more humans 
find the robot sociable, the more they are prone to adequately 
react to its engaging actions. (H2) The human evaluation of 
the robot partner’s sociability and their arm and head 
measurable motions (frequency and smoothness) are 
dependant. 

II.  METHOD AND EXPERIMENTS 

The experiment involves a triad: a robot and 2 participants 
(X and Y) at a time. The participants are only invited to 
answer a questionnaire on the perception of robots. They are 
informed that the set is filmed and that sensors are placed 
around their head and wrist for motion capture. They do not 
know about the robot’s intervention and their possible 
interaction with it. The only instruction given to them is to 
answer a questionnaire.  

Participants were randomly assigned to one of the two 
sitting positions that resulted from a 1(X) x 1(Y) between-
subjects design (NAO’s behavior when handing the envelope: 
Smooth (with X) vs. Resisting (with Y)). Resisting behavior 
refers to the fact that NAO stands slightly farther from 
participant Y than it did from participant X when handing 
him/her the envelope. It also refers to NAO keeping the 
envelope for four seconds in its fingers before releasing it to 
Y, whereas the release to X was immediate. Once the 
experience starts, there is no further intervention from the 
staff. Participants are not instructed about what they ought to 
do, it is all upon their own judgment. The scenario’s duration 
involving the robot is about 1 minute. Then, the questionnaire 
requires 5 to 10 minutes to be filled. 

A. The robot 

NAO (Aldebaran Robotics) is a 57-cm tall commercial 
humanoid robot. Its body has 25 degrees of freedom (DOF) 
whose key elements are electric motors and actuators. We 
used the programming software delivered with the robot to 
control it. We deliberately chose feed-forward control of the 
robot for repeatability. Of course, the substitution of NAO 
with any other robot can change the impression felt during the 
interaction, yet it would not change the association of certain 
physical behaviors (motion) with the mental and 
psychological states of the participants. 

B. The participants 

The 20 pairs of students, 40 students in total (14 women, 
26 men), were recruited on the campus of Tokyo Univ. of 
Agriculture and Technology, and volunteered to participate in 
a study on the perception of robots. Participants range in age 
from 19 to 35 years (X: M= 23.75, SD= 3.53; Y: M= 22.7, 
SD= 1.68). Though previous exposure to robots was not 
controlled when recruiting the participants, candidates were 
mainly students from agriculture, biology and chemistry 
departments. We considered that having seen a robot in 
videos or having been exposed to a robot does not necessarily 
mean exposure to a humanoid robot or to the same robot used 
in the experiment. The interactive and relational (and possibly 
reciprocal) dimensions involved in HRI are more subjective 
than rational and even a person who might be used to 
manipulating robots might, once the robot manifests as an 
interaction proactive partner, not behave with the same 
comfort or detachment or obviousness than the one possibly 
expected. 

C. Experimental choices and set-up  

(1) The experimental set-up consists of a rectangular area 
limited by colored screens. It is furnished with a carpet, a low 
table equipped with pens, and 2 cushions put directly on the 
floor on each side of the table, providing therefore a 
comfortable Japanese-style ambiance, closer to a cozy space 
rather than to an anonymous lab. Also when seated on the 
cushions, participants are positioned on a low level which, 
given NAO’s small height, enables face-to-face contact.  

(2) The experiment starts with NAO entering the room, 
facing the table and holding in each hand an envelope with 
the word ”Questionnaire” obviously written down on it. NAO 
walks towards the participants, then stops a few centimeters 
away from the table and greets them by bowing (his head 
bends with a slight forward bending of the upper torso). NAO 
turns towards participant X sitting to its left and extends its 
left arm holding the envelope in their direction. After a few 
seconds, its fingers release tension and the envelope is then 
ready to fall down in the participant’s hand or on the floor, 
depending on the participant’s reaction (Fig. 1).  

Then NAO turns towards participant Y, extends its right 
arm holding the second envelope in their direction. NAO is 
slightly more distant from participant Y than it was from 
participant X; so in order for the envelope exchange to 
happen, Y has not only to extend his/her arm, but also to lean 
forward and reduce the distance from NAO (Fig. 1). Another 
difference from the interaction with X, is that NAO will now 
keep the envelope 4 seconds between its fingers before 
releasing it. Having delivered both envelopes, NAO waves 
goodbye with its right hand, turns around and walks back 
towards the door.  

Participants are free to start filling the questionnaire any 
time after receiving the envelope. We chose to ask them to 
answer the questionnaire at the end of the encounter and not 
after each key-moment in order to enable the interaction to be 
uninterrupted, and to enable the candidates to remain as 
natural and spontaneous as possible without any disturbance. 
The whole situation lasts for one minute only and the 
participants’ memory and impressions about their encounter 
with the robot are likely to be still fresh and vivid.  
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(3) Having two participants at a time might probably bring 
some uncontrolled variable, but it also contributes to limit the 
artificial dimension of the experiment and enhance the real 
dimension of the encounter. This choice allows NAO to 
manifest different -possibly perceived as “subjective”- 
behaviors regarding the same action: delivering the 
questionnaire. Furthermore, we felt that the stress that might 
generate from the unpredictable factors proper to the situation 
as well as from a close encounter with a robot might be 
counter-balanced, or at least eased, by being two persons 
facing the robot (all the pairs were recruited together and 
consequently knew each other).  

(4) The robot shows a slightly different behavior with 
each participant, which allows limiting its repeatability and 
predictability (and mechanical functioning as a machine). It 
also allows seeing how this difference of behavior would be 
interpreted by both participants. This situation is a particular 
illustration of what could happen in the future in public (or 
even domestic) spaces where the robot has precise tasks to 
accomplish and is prone to interact with different users that 
are not inevitably aware of its intervention and are relatively 
free to interact with it.  

(5) NAO is not presented here as an experimental object 
but rather has a proactive role and a real essential task to 
accomplish which makes it a clear potential interaction 
partner. Furthermore, it punctuates the encounter’s beginning 
& end with non-verbal greetings (NAO bows in the beginning 
according to the Japanese way of greeting and greets goodbye 
by waving its hand in a more international style this time).   

D. Data collection  

We used in this study distinct but complementary tools in 
order to have a more accurate and faithful access on what was 
really experienced by the participants as well as to limit 
ambiguity in the results and explore the possibility of 
combining variables of different kinds (e.g. answers to the 
questionnaire and reactions to the robots) to analyze the data 
available and have a different perspective on the participants’ 
experience of the encounter with the robot. 

(1) The questionnaire proposed to the participants consists 
of three parts/methods addressing different topics but also 
sometimes the same topic considered from different 
perspectives. The questionnaire is written in Japanese to avoid 
possible confusions in the nuances that an insufficient level of 
English could bring. It consists of a first part using a 7-point 
Likert scale, a second part with Multiple Choice Questions 
(one of the topic addressed here is earlier exposure to robots), 
and a  third very short part consisting of two open-ended 
questions enabling the participants to describe NAO and the 
interaction with it in their own words.  In the present study we 
focus on the participants’ ratings of NAO’s sociability which 
are obtained using the 7-point Likert scale: 1 meaning “not 
sociable at all”, 7 “Highly sociable”. We added 0 for 
“Irrelevant statement” to allow a more precise expression.  

(2) Each experimental session is video recorded using two 
stable cameras: One is filming the set from behind and gives 
images of the robot entering the set and of its interaction with 
the participants. The other is facing the participants and 
providing images of their movements and facial expressions. 
This tool is particularly used to collect data on the 

participants’ non-verbal behavior and on their reactions 
(answer back or not) to NAO’s gestures. The recorded data is 
reinforced with observation notes taken by the psychologist of 
our team.  

(3) Two IMU (Inertial Measurement Unit) sensors are 
used for each participant. One is fixed on the forehead to 
capture the head and upper torso movements; the other on the 
arm -the right arm for X participants and the left for Y 
participants, each being respectively the closest arm to the 
robot’s position and the one to be most likely used (from our 
observations on a pilot study of 20 candidates) by the 
participants to fetch the envelope. The IMU sensors measure 
the longitudinal accelerations and the rotational velocities 
around 3-axes. Thus, more discrete micro-movement data is 
recorded giving us another level of information regarding the 
participants’ experience and reactions to NAO. Data for two 
pairs of candidates are unavailable. 

E. Data analysis 

(1) The motion data are analyzed from the IMU and from 
the video. From the IMU data, the 3 components of the 
rotational velocity and the 3 components of the acceleration 
are post-processed separately to obtain two types of 
information. Frequency analysis: First a simple frequency 
analysis on the hand motion data (angular velocity) is 
performed during the grasping motions and when answering 
the robot’s goodbye by waving the hand; the frequency (Hz) 
of the first pick is used. Second, the smoothness of the motion 
during the overall interaction is computed.  

Motion smoothness: There are several methods to assess 
the motion smoothness [17], we chose the jerk metrics (1/s2). 
For that, the accelerations are used to compute the jerk 
magnitude averaged over overall motion and normalized with 
respect to the peak speed. The smaller the jerk metric is the 
smoother the movement is.  

(2) We calculated the descriptive statistics (95% 
Confidence Interval) related to the participants’ responses to 
the robot’s engaging actions to interact as well as the 
descriptive statistics based on their answers to all the parts of 
the Questionnaire except for the open-ended questions part 
from which answers were used when clarification was needed 
[11]. We also calculated the Chronbach’s α reliability for 
certain items in the questionnaire and found the questionnaire 
to be valid and to have a good internal reliability (Table I).  

TABLE I.  CHRONBACH’S α RELIABILITY TEST FOR SELECTED 
ITEMS IN THE QUESTIONNAIRE RELATED TO THE ENCOUNTER WITH 

NAO AND NAO’S SOCIABILITY 

 
 

Questionnaire items 

Participants’ evaluation of 
the encounter (About NAO 

& Interacting with it) 
 

Sections A & B 

NAO’s 
Sociability 

 
A6 A9 

Chronbach’s α  
reliability 

0.83 0.84 
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Figure 1.  The experimental setup when X and Y take the envelope from 
NAO 

III.  MAIN  RESULTS  

Evaluating possible dependencies (Spearman’s rank 
correlation coefficient) between different pairs of variables 
(Table II, Table III), particularly in relation to the robot’s 
sociable character, to the participants’ reactions to its gestures 
and to the measured motion, showed interesting and strong 
associations between many criteria, and also revealed the 
absence of any correlation between some others. Only the 
most significant results related to this paper’s hypotheses are 
presented here (Fig. 2, Table II and Table III). In Table II and 
Table III, the p-value is obtained using the Student’s t-
distribution.  

A. Earlier exposure to robots 

Earlier exposure was low for X (M= 2.55, SD= 2.06, 
SEM= 0.42) and medium for Y (M= 3.85, SD= 2.43, SEM= 
0.54). 40% of X reported having never been exposed to real 
robots, 45% said to be familiar with robots from movies and 
literature. 40% of Y reported to have been exposed at least 
once to a real robot, 55% said to be familiar with robots from 
movies and literature. Generally, most of the participants 
(70% of the 40 participants) had never been exposed to a real 
robot before. 

B. Reactions to NAO’s gestures 

Most participants found rather easy/clear to understand 
NAO’s actions (X: M= 5.25, SD= 1.71, SEM= 0.38; Y:  M= 
4.8, SD= 1.73, SEM= 0.38) and NAO’s behavior (X: M= 
5.00, SD= 1.97, SEM= 0.44; Y: M= 4.55, SD= 1.79, SEM= 
0.4). Most participants (80% X; 75% Y) understood NAO’s 
intention of giving them the envelope and found it easy to 
react to it. Only 35% of X and 25% of Y found it easy to 
decide on how/whether to react to its greetings. Participants 
were mostly confused about taking decisions regarding: 
reacting or not to NAO’s greetings and actions since they 
were not told too (35% X), opening or not the envelope (55% 
X, 35% Y) and taking or not the envelope when NAO resisted 
(55% Y).   

Though they have not been p rev i ous l y informed 
about the interaction or instructed about what they ought to 
do, 80% X and 85% Y were proactive towards NAO’s arm 
movement and took the envelope (Fig. 2). Of course, Y had 
seen NAO performing the same movement with X which 
might have facilitated their reaction, knowing that this 
possible effect was not addressed in our study. Nevertheless, 
as the novelty of NAO resisting before handing the envelope 
is introduced with Y, the large number of participants who 
adequately reacted is to be noted. Reacting to NAO’s 

greetings was less effective as less than half of the participants 
answered to it (hello: 45% X; 35% Y; goodbye: 30% X; 35% 
Y). More generally, the more participants were able to make 
sense of the interaction, the more they found it easy to react to 
NAO’s engaging actions (X: P=0.02, R=0.50; Y: P=0.04, 
R=0.46) [18].  

We ran a T-Test to compare X and Y participants’ 
reactions to the robot’s engaging actions. When comparing X 
participants’ and Y participants’ respective reactions to 
NAO’s greetings, before (greeting hello) and after (greeting 
goodbye) exchanging the envelope, we found the difference 
in their response to be not statistically significant, thus likely 
to be the result of random chance alone [11]. The results of 
the T-Test showed similar lack of statistical significance 
when comparing between X participants’ reactions and Y 
participants’ reactions to NAO handing them the envelope. 
No statistical proof was found to assert that X and Y reacted 
differently to NAO, nor to assume that the difference of 
behavior showed by NAO when handing the envelope 
respectively to X and Y participants had a relevant impact on 
their respective reactions (to greetings and to the envelope 
exchange).  

C. Evaluation of NAO’s sociable character 

To describe NAO’s character and its perception by the 
participants, several adjectives such as sociable, polite, caring, 
interesting, funny, seductive or hostile and unpredictable, are 
rated by them in the first part of the questionnaire. We made 
the choice of including a large variety of adjectives, not 
necessarily related to NAO’s role or to its displayed 
characteristics during the experiment, in order to enable the 
participants to express as widely and personally as possible 
their perception of NAO. Indeed, as showed by [19], [20], 
humans tend to draw inferences about a robot’s abilities and 
personality in a way going beyond its observable actions. In 
[11], results showed that the participants’ perception of NAO 
and their perception of interacting with it were generally 
highly positive. Even NAO’s difference of behavior from 
participant X to participant Y, during the envelope exchange, 
though unpredictable, is not negatively interpreted neither by 
X or Y.  

Most participants found NAO to be medium-to-high 
sociable (X: M= 4.95, SD= 1.82, SEM= 0.40; Y: M= 4.85, 
SD= 2.08, SEM= 0.46). T-Test results showed a lack of 
statistical significance when comparing X participants’ and Y 
participants’ respective evaluation of NAO’s sociability. We 
therefore considered X and Y participants as one group of 40 
candidates when calculating the correlations between their 
perception of NAO’s sociable character and their response to 
its different gestures (greeting hello, handing the envelope, 
greeting goodbye).  

D. Finding NAO sociable and reacting to its gestures 

High positive correlations (Spearman) were validated 
between the participants’ evaluation of NAO’s sociability and 
their reactions to its different gestures (Table II). More 
particularly, results showed that the more participants found 
NAO sociable, the more they reacted adequately to its 
gestures, i.e. the more they greeted it back hello and goodbye, 
and the more they took the envelope from it. 
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E. Appreciating the robot’s sociable character in relation 
to the motion frequency and smoothness 

There is a significant positive correlation between finding 
the robot sociable and the frequency of the arm motion when 
taking the envelope (Table III). The more sociable the robot is 
perceived, the higher the frequency of the movement is. 
Similarly, there is a strong positive correlation between the 
frequency of waving back goodbye and the sociability of 
NAO (Table III).  

No significant correlation was validated regarding the 
robot’s sociable character and the frequency of waving back 
hello. This is likely to be a consequence of the fact that the 
robot’s hello gesture and the participants’ reaction to it 
(waving back hello) occur in the very first beginning (the first 
ten seconds more exactly) of the unexpected encounter: at this 
moment, the whole encounter (meaning the robot, its 
intervention and the interaction with it) is new to the 
participants who probably have not had yet the time to 
evaluate the robot’s character and have not yet a clear 
opinion/impression about it.  

When considering the smoothness of the motion, the jerk 
metrics of the head motion appear to be positively correlated 
with the evaluation of NAO’s sociability (Table III). The head 
movement tends to be more jerky (less smooth) when the 
robot is perceived as being sociable, which means that on the 
contrary the head movements have a tendency to freeze when 
the robot is perceived as having little/limited sociability 
which translates into a less jerky (smoother) motion. 

TABLE II.  SIGNIFICANT SPEARMAN CORRELATIONS BETWEEN 
TWO PARAMETERS: EVALUATING NAO’S SOCIABLE CHARACTER 

AND REACTING  TO  NAO’S PROACTIVE ACTIONS 

Variables p-value    Corr. 

NAO is sociable / Reacting to NAO greeting hello 
 
NAO is sociable / Reacting to NAO greeting goodbye 
 
NAO is sociable / Reacting to NAO handing the 
envelope 
 

  0.01  0.47 
 
  0.01  0.54 
 
  0.01        0.65 
 

 

TABLE III.  SPEARMAN CORRELATIONS BETWEEN EVALUATING 
NAO’S SOCIABLE CHARACTER AND TWO MOTION CHARACTERISTICS: THE 

ARM FREQUENCY WHEN REACTING TO NAO’S GESTURES AND THE JERK 
METRICS OF THE OVERALL MOVEMENTS OF THE HEAD AND TORSO 

Variables p-value    Corr. 

 
NAO is sociable / Frequency of the human arm when 
greeting back NAO goodbye  
 
NAO is sociable / Frequency of the human arm when 
reacting to NAO handing the envelope 
 
NAO is sociable / Jerk metrics of the human overall 
movements of the head and torso 

   0.001  0.54 
 
    
   0.01       0.31 
 
    
   0.05       0.43 

 

IV.  DISCUSSION AND CONCLUSION 

 When comparing X participants’ and Y participants’ 
respective reactions to NAO’s actions (greeting hello, 
handing the envelope, greeting goodbye), as well as when 
comparing their respective perception of NAO’s sociability, 
no proof was found to assert that the difference of behavior 
displayed by NAO had an impact on X or Y. This might be 
explained by the fact that Y participants saw NAO handing X 
participants the envelope, and that X and Y participants’ 
respective perception of it and of the interaction with it were 
based on the global performance of the robot and not strictly 
on their one-to-one interaction with it [11]. Also, a recent 
study [21] provided the evidence for the fact that the 
unpredictability of a robot’s actions does not necessarily lead 
to less acceptance or less liking of it. Therefore, it is possible  
to consider that the unpredictability of the encounter with the 
robot in our experience, as well as the unpredictability of its 
change of behaviour, did not make neither Y participants, nor 
X participants, less (or differently) appreciate NAO, or less 
(or differently) respond to it. 

The results in Table III show that the arm and head 
movements of a human partner interacting with a humanoid 
robot are directly and strongly associated with their 
appreciation of the robot’s sociable character (H2 validated). 
The results in Table II also prove that the human partner’s 
appreciation of the robot’s sociability and the adequacy of the 
human partner’s response to the robot’s gestures, are strongly 
dependent (H1 validated). The sociability of a humanoid 
robot appears to be essential to successfully and adequately 
engage humans in an interaction (e.g. a joint-task such as 
exchanging an envelope).  

It is also possible to suggest that the success of a human-
robot interaction is strongly readable from the human 
partner’s motion analysis, particularly from the head and arm 
movements. When the robot is perceived as being sociable or 
is likened to a partner with sociable traits, the participants 
move their arm more often (Table III) and respond adequately 
to the robot’s actions more often (Table II), whereas their 
head moves in a more brisk manner (Table III) which might 
indicate a potential feel of confidence experienced by them as 
well as reflect their engagement in the interaction. It is 
important to keep in mind that the analysis (jerk metrics) of 
the smoothness of the head and torso movements was 
computed during the whole interaction with the robot. This 
means that the motion capture of the participants’ head and 
torso is carried out during the complete duration of the 
encounter. These head and torso movements are not only the 
ones possibly displayed when answering NAO’s hello (some 
participants greeting NAO back by bowing, whereas others 
just reacted by waving their hand or their arm), but are the 
overall movements displayed during the interaction. 

Though participants gave medium to high scores to “NAO 
is sociable”, most of them engaged more frequently in a task-
oriented (or useful) interaction (taking the envelope from 
NAO as they needed the questionnaire it contained), than in a 
pure social interaction (such as greeting) [16]. Participants 
appreciated NAO’s sociable character but did not feel obliged 
to act towards it with reciprocity and equivalent sociability 
[11]. Results also suggest that even though enabling robots to 
perform socially-engaging gestures such as greetings, has a 
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positive impact on appreciating the robot’s sociability and 
responding adequately to its actions, these social features of 
the robots are not necessarily sufficient to efficiently engage 
humans in what would be a strictly social 
exchange/interaction. In [22], the authors have shown that 
humans tend to respond socially to robots, whereas in [23] the 
authors have shown that it is probable that they won’t exactly 
react to them as they would to other humans. In the particular 
context of the present study, it is important to keep in mind 
that participants were not instructed to interact on demand or 
to fulfil experimental directives regarding the response to the 
robot’s actions. 

We are aware that this paper’s results are limited to a 
specific interaction with a specific robot: NAO, and would 
gain in being tested with different types of interaction 
scenarios and with different types of robots. The study being 
conducted in Japan, our findings will gain to be compared to 
results from a future experiment conducted in a western 
culture, in order to get an insight on intercultural variations. In 
that case, some experimental choices such as the Japanese 
design of the set-up (low table, cushions on the floor), and the 
use of bowing by way of greeting, would be changed and 
adapted to the experiment’s new context, in order to avoid 
cultural bias. Furthermore, conducting the same study in 
another culture would enable us to investigate, in relation to 
this culture’s social codes, the interest of measuring the 
motion of certain specific body parts (such as the arm, or the 
head and torso) as well as of investigating their possible 
dependencies with the human partner’s inner experience. 

The dependencies existing between body motion, 
appreciation of the robot’s sociability, and adequacy of the 
human response to the robot proactive partner seem crucial 
for the quality and the success of HRI. The trends highlighted 
in this paper can provide a support to design intelligent 
systems able to instantly measure and possibly ‘live’ assess 
and interpret human internal experience and evaluation of the 
robot’s characteristics (e.g. its sociability), thus adjusting their 
behavior accordingly. All these findings as well as the 
interpretations and the control design developments they open 
up to, ought to be investigated in future studies. 

 

 
Figure 2.  Participants’ reactions to the robot’s gestures 
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Learning object names through shared attention

Woody Rousseau, Salvatore M. Anzalone, Mohamed Chetouani, Olivier Sigaud, Serena Ivaldi

Abstract— In typical developmental social robotics scenarios,
a robot learns new skills or high(er)-level representations of
the objects and its environment through a rich interaction with
a human tutor. In this paper, we focus on the importance of
joint attention and mutual engagement for a natural interaction
between the robot and its caregiver, studying the case where the
iCub humanoid robot learns the name of objects. We briefly
describe our software and control architecture, particularly
the way we realize a seamless joint attention mechanism on
the robot that allows the human and the robot to interact
in a natural way, such as humans would do. We investigate
the interaction performance and the response of the human
caregiver during the interaction. Overall, our experimental
results confirm the importance of joint attention for a more
natural human-robot interaction.

I. INTRODUCTION

Developmental robotics aims at endowing robots with
learning capabilities similar to that of infants so that they can
build their own representations of the surrounding world and
their own skills [2]. In human infants, interaction with human
caregivers is a key component of this learning process.
To take this important aspect into account, developmental
social robotics has emerged recently as a new field at the
intersection between developmental robotics and Human
Robot Interaction (HRI), which is intended to build social
robots able to behave adequately in the presence of humans.

The focus of this new field is on the social signals that play
a key role in driving the interaction between the robot and
its human caregiver in two directions [1]. From the human
to the robot, these signals are mainly intended to facilitate
the robot’s learning process. From the robot to the human,
they are rather intended to induce in the human the feeling
to have a natural interaction with an intelligent agent, such
as a human partner. Therefore, interaction must be real-time
and multimodal.

Two hallmarks of human-human interaction are mutual
engagement and joint attention [9]: mutual engagement is
the act of gazing to the face of the other, to establish and
maintain a visual contact; joint attention is the act of gazing
to a target and to drive the attention of the other such that
the two partners gaze at the same target or look in the same
direction. Through a combination of mutual engagement
and joint attention, it is possible to capture and maintain
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Fig. 1. The experimental setup.

the attention of the partner, focused on a specified object,
for instance to share knowledge about it [10]. Finally, the
combination of the two is such that that a natural connection
(engagement) is established between the partners, facilitating
communication [12].

This paper takes a typical developmental social robotics
scenario and focuses on the interdependency between the
HRI performance and the evolution of the interaction by the
human caregiver. We show how a robot can learn information
about simple objects in a social way, through attention
sharing with a human. As shown in Fig. 1, the iCub robot,
able to recognize the gaze of humans, is instructed about
some objects. In a first stage, the robot learns a label for each
object. In this case the object selection process is guided by
the robot, using its gaze upon an object and asking a question
about it. After this training step, the robot reports to its
partner the learnt label: in this case, the selection process is
guided by the human partner who looks towards the desired
object, while the robot follows his/her gaze. Previous works
such as [6] show the importance of initiating, ensuring and
responding to joint attention, and those aspects are placed at
the center of our experiments.

Such scenarios are not uncommon, especially when study-
ing joint attention, but frequently many constraints are im-
posed on subjects, thus biasing the interaction. In short,
because of the complexity of the computational aspects
required to estimate the partner’s proxemics variables, re-
searchers often relies on external wearable devices or simpli-
fied object pointers, which make interaction atypical and far
from natural. Constraints may include labeling items using
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a paper pointer to select the target of joint attention [6],
using an Eye-Tracker to achieve accurate gaze tracking
results [17] or an offline gaze estimation system [18]. All
those constraints negatively impact the natural aspect of the
interaction, and to our knowledge, strong efforts are required
to avoid them all.

In this paper, several challenges are addressed. The first is
to integrate several modules in the existing iCub’s software
architecture [7], allowing the subject to naturally interact
with a socially intelligent robot. The second is to make this
interaction as natural as possible and to highlight the real
perks of relying on joint attention and mutual engagement
in such situations. Finally, the experimental results as well as
the feedback obtained from subjects through a questionnaire
show how more natural interactions make it easier and how
joint attention was paramount to its success.

II. METHODS

Learning about the environment in a social way is a very
high level task that requires several kind of abilities, in
particular on the modeling of the human partners and of their
behavior, on the understanding of the shared environment,
and on the achievement of coherent behaviors which must
be readable by humans.

As shown in Fig. 1, an iCub robot shares a common
space with its human partner. Several objects are also placed
between the robot and its partner. The iCub robot is made
able to engage partners and to induce joint attention to a
random object placed on the table. The robot learns about
its environment by being able to capture and learn a label for
each of the objects focused on. In a second stage the human
is able to engage and induce joint attention on the robot to
focus on objects and to ask about their label.

To achieve such complex behaviors, we enriched a previ-
ous software architecture built in the context of the MACSI
project1 [?] with several modules able to communicate with
each other and specialized on solving a particular subprob-
lem. Modules have been developed for both Robot Operating
System (ROS) and Yet Another Robot Platform (YARP)
middlewares, made able to communicate through a generic
middleware bridge.2 In Fig. 2 a sketch of the main modules
is depicted.

The robotic system is able to recognize the presence of
humans and their behavior using a conveniently placed RGB-
D sensor, while it is able to recognize objects using the
cameras placed on the iCub’s eyes. Communication tasks
take place using both verbal and non-verbal communication:
verbal communication is achieved through speech synthesis
and using a simple speech recognition system; non-verbal
communication calls upon the ability of the robot to recog-
nize gazing and to behave in a similar way. Since the focus
of this study is on the attention sharing between the human
and the robot, rather than using complex symbol grounding

1http://macsi.isir.upmc.fr
2For more details, see http://wiki.icub.org/wiki/UPMC_

iCub_project/YARP_ROS_bridge.

systems, names of the objects are learnt in a simple way as
labels associated to the respective object features.

Fig. 2. A sketch of the pipeline of the system.

Fig. 3. Capturing the pose of the head.

A. JOINT ATTENTION SYSTEM

Humans are one of the main sources of information for
social robots. Developing a model able to accurately detect
their presence and their behavior is thus essential for all
HRI applications. The presented robotic system is able to
gather information about the human presence, about their
posture, their head movements, and other facial behaviors
during direct interactions. Humans are modeled through a 3D
description of their body in terms of Cartesian coordinates
of each joint, and in terms of the yaw, pitch and roll angles
of their head.

As shown in Fig. 3, data perceived by the RGB-D sensor is
elaborated by a Skeleton Tracking system able to detect the
presence of humans. When a human enters the field of view
of the sensor, his/her articulations are detected and tracked in
the environment, in three Cartesian dimensions. The position
of the head is then estimated by a Kalman Filter, and is then
used to find, in the RGB image, an area in which the face
should appear. A Face Tracking algorithm is then applied to
the trimmed image to retrieve the head’s pose. In order to
prevent additional noise, this information is stabilized using
a second Kalman filter. The pose is eventually buffered on a
port, readable within the finite state machine controlling the
different phases of the interaction.

1) 3D People Tracking: A multiple skeleton tracking
system provided by OpenNi is used to detect human activity
and trace in the space human bodies in terms of their joint
positions [13]. In the present interaction, only the head pose
is used. In more details, the algorithm performs a background
subtraction applied to the depth data perceived by the sensor
to distinguish the body of each person from the static

IROS-DevSoR 2013 Proceedings of International Workshop on Developmental Social Robotics

32

http://wiki.icub.org/wiki/UPMC_iCub_project/YARP_ROS_bridge
http://wiki.icub.org/wiki/UPMC_iCub_project/YARP_ROS_bridge


environment. Then, through a per-point approach, the depth
data pixels of each body are classified according to depth
invariants and 3D translation invariant features which aim at
assessing which part of the body each depth pixel belongs
to. A total of 31 patches distributed among the different
parts of the human body have been considered and classified.
The training processes performed by OpenNi employes a
database of 500k frames captured in several scenarios, such
as running, kicking or dancing. From each patch, it is then
possible to extract the position of each joint of the body
according to its density.

2) Head Pose Estimation: The estimated 3D position of
the head of the human partner can be back-projected to the
RGB image captured by the sensor to select the area in
which the head should appear. A face tracking algorithm
can be applied to the accordingly trimmed image to estimate
a model of the head in terms of yaw, pitch and roll. Getting
the head orientation information solely from the head pose is
not extremely accurate, but child developmental research [11]
shows that this is the only way of estimating the gaze until a
certain stage of development, usually near the tenth month.
Informing the human partner of this inability of the robot
to use the gaze information given by the eyes was however
made necessary by this simplification.

The Constrained Local Models (CLM) [5] algorithm has
been chosen as the method to estimate the pose of the head of
the human partners. Such an algorithm is a particular case
of the Active Appearance Models (AAM) [4] and tries to
model human faces through a statistical description based on
a set of landmarks: the face shapes are deformed iteratively
according to the landmark positions in order to find a best
match with the actual image.

The CLM algorithm is a slight variation of the AAM algo-
rithm, in which the appearance model is built by using local
features, patches of pixels around each key-point instead
of the wrapping of the whole image as used by AAM. To
adapt the actual face to the current model, the Nelder-Meade
simplex algorithm is also employed.

B. OBJECT LEARNING
The presented system focuses on learning the name of

simple objects in a social way. The learning process is guided
by a mix of verbal and non-verbal communication between a
social robot and a human teacher. Without losing its general
aspect, the system has been constrained to the recognition
of objects strongly described by their colorimetric character-
ization, such as baby’s toys. Moreover, to capture the names
of the objects, a labeling system based on a simple speech
recognition system has been developed.

In the training session the robot guides the gaze of the
human partner towards a random object. Then, it asks for a
label and it associates such a label with the features of the
perceived object. After this learning stage, the human partner
can guide the gaze of the robot to an object: if the perceived
features are close to the ones of an already labeled object, the
robot assumes it as a known acquaintance and communicates
verbally the associated label.

1) Objects Characterization: The object recognition sys-
tem used in the presented architecture relies on the informa-
tion perceived by the camera mounted on the eyes of iCub.
The robot’s head first points to the location gazed upon by
the human partner over a table placed in front of them. The
object recognition system aims at detecting, locating and
extracting significant features of the objects perceived, as
shown in Figure 4, assuming they are characterized by their
color.

Fig. 4. The objects located by the robot’s camera.

A first elaboration of the image is performed through an
edge detection process to locate circles, using the Hough
Gradient method [8] which retrieves the part of the image
in which objects should appear. After a trim of the image
according to the obtained results, in order to remove any
contour not located on the table, a second stage of refinement
is performed through a Canny edge detector [3] and trough
the Suzuki algorithm [14] for finding contours. Since the
eligible object is the one pointed by the gaze of both the
human partner and the robot, the closest shape found near
the center of the image is considered and selected as the
object to classify. Finally, an average of the color of the pixel
inside the contour is calculated and used as main feature of
the object. The color space considered is CieLab space, in
which the distances between colors match the differences
perceived by the human eye [15]. A Delta-E3 distance is
used along with a threshold to distinguish already known
objects from new ones.

2) Names Labeling: A speech recognition system based
on CMU Sphinx is used to capture the name of the objects
presented to the robot. Through a Lavalier microphone,
the voice is captured in a clear way, without limiting the
movements of the human subject and without being limiting
the spontaneity of the interaction with the robot.

As shown in Table I, a restrictive grammar has been
created to achieve the simple task of capturing the color of
the object. The grammar is designed to give the possibility
to the subjects to include the color of the object in a more
complex sentence. Such sentence can be composed by an
optional verb, an article, and the name of the object. This
grammar helps filtering unwanted step words, extracting just
the most important informative content, the color of the
object.

3 ∆E∗ =
√

(L1 − L2)2 + (a1 − a2)2 + (b1 − b2)2 where L, a and
b are the coordinates of the colors to be compared in the CieLab color
space.
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#JSGF V1.0;

grammar explanation;

public <explanation>=
<verb><article><label><object>;

<verb>= [ its | it is ];
<article>= [ /5/ a|/1/ the ];
<label>= ( green | yellow | orange | red | blue );
<object>= [ ball ];

TABLE I
THE GRAMMAR USED BY THE SYSTEM.

III. EXPERIMENTAL PROTOCOL
The robot learning process is supervised by the human

partner. At the beginning, the robot waits to establish mutual
eye engagement with the human partner. In the first training
phase, the robot learns the labels of the objects by the
subjects. In the second test phase, the human gazes to one
of the objects, and the robot responds with the learnt label.
Gaze is important for both agents: during the training phase
the robot gazes and induces joint attention with the human;
in the second stage the subject gazes and induces a joint
attention response from the robot.

Algorithm 1 Robot’s Training Session
procedure TRAINING(partner,objects[])

Waiting for partner-robot mutual engagement
for all Objects on the table do

Robot gazes to the object
Robot says "What is this?"
Robot waits for the label
Robot greets

end for
end procedure

Algorithm 2 Robot’s Testing Session
procedure TESTING(partner,objects[])

Waiting partner-robot mutual engagement
loop

Robot says to "Look at an object"
Robot waits for partner’s gazing
Robot gazes accordingly
Robot recognizes the object and vocalizes the label

end loop
end procedure

3) Two steps interaction: In the training phase, described
by Algorithm 1, the robot leads the interaction, driving the
focus of attention of the person towards an object, using
its gaze. Here, the readability of the robot’s behavior is the
key factor for a successful interaction. In the second phase,
described by Algorithm 2, the human gazes first, and in
response the robot gazes back at the same point. Here, the
key ability of the robot is the estimation of the gaze.

4) Data Collection: A population of 7 subjects equally
distributed among sex (4 men, 3 women), and age (25.5
years, σ = ±2.5) has been randomly chosen mostly from
the ISIR laboratory but also from the UPMC campus. Each
of them has been separately involved in the experiment.
Contamination bias has been prevented by keeping the people
who already took part away from those who had not yet.
Each subject has been informed about the teaching task with
the iCub robot through an instruction paper, in order to give
to each of them the same amount of knowledge about the
system. In order to keep the interaction natural, subjects
were mostly asked to be attentive to the cues given by the
robot, to be able to follow the evolution of the interaction.
Three colored balls were placed on a shared table between
the human and the robot, on the left, on the center and on
the right, and used as objects to label. Those objects were
deliberately put sparse, not because of the contour detection
module which would work with those further packed, but
because the yaw estimation of the subject’s head would be
made harder, since the thresholds used for gaze estimation
would have to be reduced. This would have certainly had a
negative impact on the overall results of the experiments.

Six additional subjects were presented with a variant of
the experiment, in which the object is selected by the human
during the learning phase, through his gaze. This made the
first phase the most error-prone as it required a correct
estimation of the human gaze and of the color object, both
through image processing and voice recognition.

In all presented results, the main focus is the first popula-
tion of 7 subjects. However, feedback statistics were obtained
by comparing both populations.

IV. EXPERIMENTAL RESULTS

Experiments of the system have been performed in order
to evaluate the system in terms of HRI performances and
objects learning.

5) HRI Evaluation: A first evaluation was conducted on
the gazing behavior of both the robot and the human. During
the training stage, the robot tries to induce attention towards
an object placed on a shared table: here, the frequency of
gazing by the human partner toward the same object was
counted. As shown in Table II (line 1), the high level of such
frequency can be considered as a very good readability from
the humans of the gaze of the robot. As shown in [?], this
high readability does not mean that the information brought
by the robot’s gaze is at the same level as information
one could get from another human partner’s gaze. Indeed,
subjects were in the experiment highly focused on the robot’s
gaze, given the fact that the interaction relied on the proper
recognition of the gazed at object.

During the test stage, the human gazes upon the objects,
trying to induce attention on the robot. Here, the main ability
of the robot is to recognize the gazing of the human partner.
The frequency of the robot’s correct response on human
gazing was taken in account. As shown in Table II (line 2),
the high level of such frequency evaluates the robot ability
on sharing attention with its partner over the same object.
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To better understand this second result, a pre-evaluation
of the system was conducted to evaluate the performances
of the CLM-based algorithm: through the use of a motion
capture system composed by 3 CodaMotion CX1-800 units,
the ground truth of the head movements of three people
was retrieved. Each person was equipped with three markers
placed on the head, one over the left, one over the right ear
and one on the front of the head. Each subject stood up in
front of the robot at around 1.5m of distance from an RGB-
D sensor, moving the gaze on the left, on the right, upward
and downward. Table III shows the results of the comparison
between the ground truth obtained with the motion capture
system and the information obtained through the RGB-D
sensor, using the gaze recognition algorithm presented above.
The low recognition rate on the head’s pitch of the human
partner explains well the difficulty of the system to retrieve
correctly the attention focus of the human.

Inducer Subject JA Induced
Robot 100%
Human 65.79%
Overall 82.89%

TABLE II
JOINT ATTENTION INDUCTION EVALUATION: THE ROBOT INDUCES JA

ON THE HUMAN; THE HUMAN INDUCES JA ON THE ROBOT.

Head Pose CLM
Pitch 49%
Yaw 93%
Overall 71%

TABLE III
THE HEAD’S POSE ESTIMATION PERFORMANCES USING THE CLM

BASED APPROACH.

System Performance
Object Recognition 92.72%
Speech Recognition 76.19%
Overall 84.46%

TABLE IV
PERFORMANCES OF THE TWO MAIN OBJECT LEARNING SYSTEMS: THE

OBJECT RECOGNITION AND THE SPEECH RECOGNITION MODULES.

6) Objects Learning: The performances of the labels
learning process is influenced mainly by the capability of
the object recognition system to correctly extract the correct
feature from the object perceived, and to accurately perceive
the speech of the person. An evaluation of both subsystems
was performed in each case in which these modules were
used.

As depicted in Table IV, while the performance on features
extraction obtained by the color based object recognition
system is good, lower performance was obtained by the
speech recognition system. This result is very likely biased
because the speech recognition system was in English, which
was not all the subjects’ mother tongue.

A final analysis of the whole learning system was taken
in account, by simply matching the object gazed by the
human in the test stage, and the label asserted by the
robot. In this case a sum of the different errors of each
module occurs: the errors on object recognition, on speech
recognition and, mainly, on head gaze estimation, reduces the
whole performance of the system, that is able to correctly
assess the taught label in the 50% cases over 38 trials.

Average Scoring (1-5)
Main Group Variant

The robot is intelligent 2.86 2.33
The robot is a better partner

for a cooperative task
3 2.33

The robot is involved in the
naming process

4 4.5

The robot behaves like a child
in development

2.29 3.17

TABLE V
AVERAGE LIKERT SCALE SCORING FOR BOTH SUBJECT GROUPS.

7) Subjects Feedback: Right after the interaction, a ques-
tionnaire containing the same questions for both variants of
the experiment was submitted to all the involved subjects.
Questions presented aimed at assessing how people felt about
the robot as a partner and about its behaviors. Subject rated
each statement from 1 to 5 following the model of a Likert
scale, according on how much they agree with them. The
most significant results are given in Table V.

In the main experiment during the training stage the
robot guides the selection of the objects to be labeled:
in this case the overall behavior of the robot is seen as
more intelligent and the robot is perceived as an efficient
partner for cooperative tasks. Statements evaluating technical
aspects, such as how easy it was to identify the object
designated by the robot, or how easy it was to figure out
when the robot expected an answer, were also ranked higher.

In the experiment variant in which the objects to learn are
selected by the human, despite the technical aspects that were
ranked with a low score, the robot was seen as more involved
in the naming process: this response is probably given due to
the fact that the robot responds well to the joint attention and
arouses a sense of presence in the human partner. Moreover,
such learning stage tends to remind subjects of teaching
activities with a child, rather than with an adult: this explains
why the robot is perceived in this experiment variant as a
developing child. Such results show that, despite the fact that
joint attention and mutual engagement bring some technical
difficulties, they are able to arouse on the human partners
a sensation of ’intelligence’ of the robot, as the robot is
involved in the interaction.

At last, a high variance (σ2 = 2.57), associated with the
question related to how easily people felt the robot could
determine their own gaze, is found. This can be explained
by the fact that subjects handle the gazing in different
ways: some people choose to look to the items without
moving too much their head, while others exaggerate their
head movements, trying to facilitate the recognition of their
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behaviors by the robot. In any case, both behaviors trigger a
decrease of the performances of the recognition of people’s
gaze.

V. CONCLUSION AND FUTURE WORK

We presented a shared attention system that improves the
capability of robots to learn objects labels through social
tutoring. Our system is aimed to ensure an effective joint
attention mechanism avoiding the use of wearable gaze
tracking devices on the human, which would have improved
the quality of human gaze estimation but perturbed the
natural interaction between the human and robotic partners.
Despite this intrinsic limitation, we were able to ensure the
quality of the gaze estimation, and realize HRI experiments
in a more natural interaction setting.

The results obtained both through the success rates of the
different subsystems as well as through the subjects feedback
sheds light on the importance of joint attention for staging
a natural HRI. Our results relate to the ones obtained by
Huang & Thomaz in [6], where the interaction between the
human and the robot was simplified by tags on the objects.

Future work includes the strengthening of our preliminary
results, by doing more experiments with more naive subjects,
and presenting more statical evaluations about the effective
performance of the gaze tracking estimation with a ground
truth (an external device such as an eye-tracker): this will be
done only to assess the robustness of our system, because
the crucial aspects of our experiments is the preservation of
the naturalness of the interaction between partners, without
intermediate elements or devices. We may include the possi-
bility of a fine-grained temporal analysis, including the states
sequencing of the finite state machine and some cause-effect
comparison obtained focusing on the head’s pitch and yaw
data from both the human and the robot. Such studies would
produce some accurate estimation of the adequate timings
and sequencing of the non verbal and verbal communications
with humans [12]. However, the learning process does not
include the expression of uncertainty from the robot, causing
the subject to sometimes repeat the label, causing difficulties
in such an analysis. More complex machine learning based
interactions such as the one presented in [?], have the robot
give various feedback to its human teacher, providing updates
on its learning status, including through uncertainty. Works
such as [?] go even further, by allowing the robot to react to
incomplete information given by the human partner, thus not
only letting the partner know there is uncertainty, but also
reacting properly to such situations.

Finally, the interaction task presented in this paper is
limited to a simple labeling case. It could benefit from
facing more complex symbol grounding situations such as
the one addressed in [16] [19] or from associating people
to known items, making the robot’s world representation
more complex as well. Although it would make the tech-
nical aspects more challenging, it would eventually trigger
interesting feedback results from human partners and would
enable further progress in the field of developmental robotics.
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 

Abstract— People having disabilities (especially 

hearing impaired) need better interaction with their 

environment and humanoid robots can help in this 

mission. This is a challenging issue because high level 

linguistic capabilities are required for communication 

and the humanoid robot should realize sign language 

processing in the case of interaction with hearing 

impaired people. In the human brain, some cortical and 

cerebral zones are responsible from cognitive functions. 

Therefore in this paper, it is required to consider a novel 

brain inspired robot control architecture consisting of 

artificial emotion imitated computational cognitive and 

limbic system anatomical structure of human brain 

includes some critical zones named cerebral cortical 

zones such as Orbitofrontal Cortex, Sensory Cortex, 

Thalamus, and Limbic system components (e.g., Basal-

Ganglia, Amygdala). Designed architecture is embedded 

into humanoid robot NAO H25. An interaction game 

play was demonstrated by a simulation. Finally results 

are observed and discussed. 

I. INTRODUCTION 

People having disabilities (especially hearing 

impaired) need better interaction with their 

environment and humanoid robots can help in this 

mission. This is a challenging issue that high level 

linguistic capabilities are required for communication 

and the humanoid robot should realize sign language 

processing in the case of interaction with hearing 

impaired people [1]. As a visual communication tool, 

the sign language constitutes complicated gestural 

tasks including all upper torso physical behaviours of 

the humanoid robot such as arm, hand, finger, neck 

(head) movements. These can be achieved by having a 

complex cognitive architecture in the humanoid robot. 

 

Modern AI architectures developed for Human-Robot 

Interaction (HRI) have been based on biologically 

inspired deliberative transactions, which constitute the 

principles of cognitive science and neuroscience. 

Therefore, in the global society, there is an increasing 

demand to an automated solution, which solves the 

communication problems. In the nature, these 

concepts are biologically realized in the human brain. 

The computational approximation of human brain 

should exhibit features of higher cognitive abilities 

such as deliberative planning (task allocation), re-

organizing (learning), communication, consciousness 

and self-awareness. When investigating from the 

computational intelligence, computer science and 
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engineering viewpoint, consciousness and self-

awareness are still uncovered philosophical concepts. 

Consciousness includes the creatures having 

perception, thoughts instinctual feelings, autonomous 

planning of behaviours, self-acting, awareness of 

themselves, selective attention, performing 

simultaneous decision making and recursively task 

processing (behaviour execution) in an infinite loop 

fashion.  

 

Thus, the purpose of the proposed Artificial 

Intelligence (AI) framework is to enable that 

humanoid robot -as an artificial live form- provides 

the perfect interactional conformity with humans and 

uncertain dynamic environment; and when the robot 

establishes an interaction with a disabled person, 

designed computational cognitive architecture of the 

humanoid robot takes over the mission of carrying out 

a service or rehabilitation task. In this paper, we 

demonstrate the capabilities of our cognitive 

architecture on an interaction game between a 

humanoid robot and people having disabilities to 

provide a suitable testing environment. Section II 

provides background information about nature 

inspired approach and the following section gives the 

detailed design instructions of the computational 

cognitive architecture. Section IV presents the 

simulation results followed by the discussion and 

potential applications of the proposed method in the 

next section. The final section concludes the paper.  

II. NATURE INSPIRED APPROACH 

In the human brain (Figure 1), some areas of cortical 

and cerebral zones are responsible from cognitive 

functions. These cortical zones are sensory cortex, 

orbitofrontal/prefrontal cortex, associative cortex, 

thalamus, cerebellum, brain stem, limbic system (e.g., 

amygdala, basal ganglia, hippocampus) [2][3].  

 

 
Figure 1. Human brain cortical zones [3] 

 

Computational Model of the Biologically Inspired Cognitive 

Architecture for Human Robot Interaction 
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According to neuroscientific evidence, associative 

learning of emotional responses (states) and gestural 

expressions come from the amygdala [4][5]. Also 

behaviour selection events are realized in basal 

ganglia [6][7]. Hippocampus is an important area for 

short term/long term memory representation and 

provides information about spatial navigation. 

Associative cortex is responsible of high level 

cognitive activities such as meta-level reasoning and 

inference, high level deliberative decision making. 

Motor cortex contributing to planning of low level 

actions, representation and generating behaviours, 

complex task decomposition, permissions of task 

access, realizing actuator commands [2]. Sensory 

cortex is divided into some sub-modules, but it mainly 

works on feature representation and recognition. 

Thalamus is responsible of segmentation of perceptual 

sensorial raw data and applying pre-processing on 

them [2].    

 

Next, we discuss computational viewpoint of self-

awareness, consciousness and describe developing a 

computational model imitated by artificial emotion of 

the brain inspired by general cognitive architecture 

which constitutes a limbic system based on these 

concepts. In fact, we are trying to develop a model, 

which captures the more realistic properties of the 

limbic system which are mainly known as the 

Amygdala-Orbitofrontal Cortex system.  
 

III. BRAIN INSPIRED COGNITIVE ARCHITECTURE  

Nowadays, in order to comply with humans and 

achieve improved human-robot interaction, the 

computational model of AI architecture in the 

humanoid robots needs higher level cognitive abilities 

which support awareness and consciousness aspects. 

The biological nature of human brain contains these 

features. Therefore, in Figure 2, it is required to 

consider a novel brain inspired robot control 

architecture consisting of artificial emotion imitated 

computational cognitive and limbic system.  

 

Anatomical structure of human brain includes some 

critical zones named cerebral cortical zones such as 

Orbitofrontal Cortex, Sensory Cortex, Thalamus, 

Limbic system components (Basal-Ganglia, 

Amygdala). Functional analogies of these units and 

their pathways between them allow us to construct 

brain-inspired frameworks of computational models of 

these cerebral cortical zones. 

 

 
Figure 2. Computational framework of the biologically inspired cognitive architecture 
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As a nonlinear dynamic model, the major 

developmental novelty in our paper is that the Cellular 

Neural Network (CNN) model is employed to 

construct the framework of biologically inspired 

cognitive architecture and better representation of the 

input-output topology of the system. Also in this 

model, an adaptation procedure is applied on some 

cortical units (e.g., Sensory Cortex, Orbitofrontal 

Cortex and Amygdala). In this way, the internal states 

of these units are converged to some specific points. 

These points describe characteristics of cortical units 

in the architecture. The adaptation procedure allows 

the system to learn the decision boundary for behavior 

selection. 

 

All components of the architecture are modeled in this 

neural network. 

 

                                                    (1) 

 

Where    represents the states of the system,    the 

output values of the each component,    input values 

of the each component [8]. In the cellular neural 

network structure, which describes a mathematical 

model of the cognitive architecture, the components 

  ,    and    are the vectors with 7x1 dimension as 

the default case of one executable behavior. Also 

indices (k and k+1) are expressed as current and next 

values in a variable of the system. Depending on the 

increase or decrease of the number of the behaviors in 

the architecture, dimensions of the matrices and 

vectors are grown or contracted accordingly.  
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where parameters Str, Stn, Gpi, Th, SC, OC, Am are 

striatum, subthalamic nucleus, globus pallidus, 

thalamus, sensory cortex, orbitofrontal cortex and 

amygdala respectively.  The output vector in the 

system model has a form of           . This output 

vector is obtained after the state vector    is 

transferred via a neural activation function. In our 

system, the activation function is selected to restrict 

the incoming signal, which is in the form of  
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The matrix   describes the inner dynamics of the 

system components. The values of this matrix will be 

updated by using an adaptation mechanism. Matrix   

gives us a neural topology between output connections 

of the system components (cerebral zones in the 

computational model of the brain). Matrix   defines a 

neural topology between input connections of the 

system components. 

 

  

[
 
 
 
 
 
 

 
 
 
 
 

   

 

 
 
 
 
 

   

 

    

   

 
 
 
 

   

 
 

    

 
 
 
 

 
 
 

   

 
 
 

 
 
 
 

   

 
 

 
 
 

   
   

 
 ]

 
 
 
 
 
 

 (5) 

 

     

[
 
 
 
 
 
 

 
 

   

 
 
 
 

 
 

   

 
 
 
 

 
 
 

   

 
 
 

 
 
 
 

   

 
   

 
 
 

   

 
   

   

   

   

 
 
 
 
 

 
 

   

 
 
 
 ]

 
 
 
 
 
 

 (6) 

 

Finally, the vector   having 7x1 dimensions as a bias 

element, expresses outer effects to the system. These 

effects may be disturbance signals or unknown 

exciting signals from the environment.  

 

Since our biologically inspired cognitive architecture 

is composed by seven cortical zones (modules), 

matrices  ,     inside the model can be considered as 

weight matrices with  the dimensions of 7x7 by 

default.  
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The matrix   in the cellular neural network structure 

for cognitive architecture is the matrix with 7x7 

dimensions in case of one behavior to be executed. 

 

Because the parameters    ,    ,     in this matrix 

are updated by an adaptation mechanism, they are also 

expressed as the inner dynamics of Sensory Cortex, 

Orbitofrontal Cortex and Amygdala modules 

respectively. 

 

When we deal with a biologically inspired cognitive 

architecture, the cerebral zones (Thalamus, Sensory 

Cortex, Orbitofrontal Cortex, Amygdala and Basal 

Ganglia) form the architectural components 

(modules), which correspond to the related rows in the 

cellular neural model.  

 

IROS-DevSoR 2013 Proceedings of International Workshop on Developmental Social Robotics

39



  

A. Cognitive Perception 

The general perception architecture namely 

“Cognitive Perception” performing cognitive abilities 

such as recognition, generalization, selective attention, 

classification/clustering, (supervised/unsupervised) 

learning, sensorial data fusion and interpretation are 

introduced here.   

Before performing these tasks, some support module 

named Thalamus is considered. It is responsible for 

data preparation and interpretation tasks such as 

segmentation, skeletal modeling. For broadcasting, the 

input stream coming from Thalamus module is opened 

and fed into computational model of “Sensory 

Cortex”.    

 

B. Thalamus 

Thalamus module can be considered as feature 

extractor part of Cognitive Perception structure. This 

module accepts raw sensory information stream [2]. 

Some preprocessing steps are applied on this raw data 

stream such as noise cancellation. Source of sensory 

information may come from Kinect of Microsoft 

Xbox. The RGB-D sensor (Kinect), which generates 

joint spatial coordinates (x,y,z) of skeletal structure for 

each joint (node) is activated and sends information 

about visual data (motion) frame by frame [1][9]. 

Then, spatial coordinates (x,y,z) of all skeletal nodes 

(joints) are transformed to roll, pitch, yaw angles for 

all frames of motion. These frames of data stream as 

the feature broadcast to the Sensory Cortex.  

 

C. Sensory Cortex 

Broadcasted data (features) coming from “Thalamus” 

are processed in two main tasks. One of the tasks is 

recognition task and the other one is selective 

attention task. The recognition task, which includes 

supervised learning activities, is usually based on 

Hidden Markov Models (HMM). In this structure, the 

recognizer module of sensory cortex generates a 

dynamic model for every distinct behavior (gesture). 

According to the data coming from input stream, it 

determines hidden states (node) and observable 

variables [9]. As a target vector, data coming from 

semantic and long-term memory (gestural behavior 

database) seed into recognizer cycle to perform 

supervised training algorithm (e.g. Baum-Welch) [1]. 

This process throws likelihoods related to the 

generated dynamic model of a gestural behavior (sign 

words) in the sense of joint -relevant information. 

Produced raw likelihood values provide us 

information about recognition process.  

 

                                        (8) 

 

The dynamics of the Sensory Cortex is represented in 

fifth row of the cellular neural model. The fifth row of 

matrix  , which expresses inner characteristics of the 

Sensory Cortex is in the form of        
                  
 

         
                                     (9) 

 

The equation (9) gives an adaptation rule, which 

updates the parameter     expressed as inner 

dynamics of the Sensory Cortex module. As an 

adaptation coefficient,     is an empirically set value 

between [0,1]. 

 

D. Orbitofrontal Cortex  

Orbitofrontal Cortex is one of the major cerebral 

cortical zones in the human brain. The orbitofrontal 

cortex (OFC) is a prefrontal cortex region in 

the frontal lobes of the brain involved in 

the cognitive processing of decision-making [3]. The 

OFC is sometimes considered also to be a part of 

the limbic system [4]. 

 

According to neuroscientific connections, Markovian 

and cellular neural modeling based machine learning 

techniques are used to achieve the proposed tasks in 

this paper.  

 

                                        (10) 

The dynamics of the Orbitofrontal Cortex is 

represented in sixth row of the cellular neural model. 

The sixth row of matrix  , which expresses inner 

characteristics of the Orbitofrontal Cortex is in the  

form of                         .  
 

         
                                   (11) 

 

The equation (11) gives an adaptation rule, which 

updates a parameter     expressed as inner dynamics 

of the Orbitofrontal Cortex module. As an adaptation 

coefficient, parameter   is an empirically set value   

between [0,1]. 

 

E. Basal Ganglia 

The basal ganglia (Figure 3) formed by a set of nuclei, 

primarily takes on action selection tasks, the decision 

of several possible behaviors to perform at a given 

time [6][7].  

 

 
Figure 3. Basal ganglia model 
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Selection mechanism of the basal ganglia utilizes an 

inhibitory effect on various motor signals. According 

to this, some motor signals can be activated or 

inactivated by inhibition that takes place within the 

basal ganglia [2]. Also a group of motor signals can be 

activated together in some time slices [7]. 

 

Recent studies show that behavior switching of the 

basal ganglia is influenced by signals from many parts 

of the brain, including the thalamus, prefrontal cortex 

and limbic system components such as hippocampus 

and amygdala [6].  

 

F. Amygdala 

As an architectural overview, amygdala is responsible 

of emotional memory storage. Also in this memory, 

activations of the behaviors may be boosted or 

diminished according to robot’s goals [3][4]. 

 

The amygdala sends impulses to the basal ganglia for 

activation of the emotional responses. In this 

architecture, the amygdala plays the primary roles on 

the formation and storage of memories associated with 

emotional events [10]. The stored memory is 

associated with weighting matrix. Also coefficients of 

this matrix are updated during the simulation. 

 

         
                                  (12) 

 

The equation (12) gives an adaptation rule which 

updates a parameter     expressed as inner dynamics 

of the Amygdala module. As an adaptation coefficient,  

parameter    is an empirically set value between [0,1]. 

 

As a simplification, the amygdala resembles to an 

engine that generates reward and penalty signals by  

reinforcement learning on the association between 

stimuli and motor systems. Emotional responses 

released by amygdala using this reinforcement 

influence, are composed by long-term memory stored 

in the weights [10].  

 

IV. SIMULATION RESULTS AND PERFORMANCE TESTS 

In the run-time, biologically inspired cognitive 

architecture of the humanoid robot requires a self-

adaptation procedure for the environmental 

uncertainties such as difficulties in the detection of 

behavioral discrimination while the architecture 

performs its cognitive abilities. During the human 

robot interaction game play designed as a test bed for 

the biologically inspired cognitive architecture, some 

cortical zones such as Sensory Cortex, Orbitofrontal 

Cortex, Amygdala  have modified gain or weighting 

parameters as shown in Fig. 4. Adaptation signals tune 

the internal states of system characteristics. 

 
Figure 4. Gain adaptation of cortical areas 

 

Also general system error of the computational 

architecture is observed by the error function, Err(t). 

The error term is expressed as a distance metric 

between ideal (accepted as true) outputs and system 

outputs retrieved by the architecture. 

 

 
Figure 5. System error 

 

Figure 5. shows the system error term, which is 

computed by Err(t)=y(x(t))-y(x(t-1)), normalized and 

presented in percentage. The system outputs are sent 

to humanoid robot as joint angles. In this project, 

NAO H25 humanoid robot is used. Due to the upper 

torso working, there are eight angles used. 

 
Figure 6. System outputs to robot’s joints 

 

Figure 6 explains the response of the humanoid robot 

to the sign language word “the car”. In this figure, R, 

L represent right and left arm. Also S, E represent 

shoulder and elbow. For example, elbow of right arm 

is expressed as RE. Angles of joints are Roll, Pitch, 

Yaw. According to this, when the card with the car 

picture is shown to the robot, sign language action 

designed to represent the sign language word was 

executed in the simulation.  
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Figure 7. Decision boundaries and attraction basin 

points for behavior selection 

Figure 7 depicts a behavior switching plane with 

decision boundaries. For a simplified visual 

representation, the figure illustrates two behaviors, 

which are competing with each other. The recognized 

behaviors release with likelihood values between 

[0,1]. In case of two behaviors switching, x1 represents 

the behavior corresponding to the sign language word 

“car”. The second behavior represents the sign 

language word “table”, which is expressed by x2. Two 

decision boundary curves can divide behavior 

switching plane into four regions. For example, if the 

likelihood values related to behaviors are given such 

as x1=0.2, x2=0.4, it converges to a point x1=0.2, x2=1. 

Thus, the x2 action (sign language word “the car”) is 

selected. If the likelihood values related to behaviors 

are x1=0.8, x2=0.1, it converges to a point x1=1, 

x2=0.1. Thus the x1 action (sign language word “the 

table”) is selected. If the likelihood values related to 

behaviors is x1=0.3, x2=0.1, it converges to a point 

x1=0, x2=0. As a consequence, none of the two actions 

are selected. If the likelihood values related to 

behaviors is x1=0.8, x2=0.7, it converges to a point 

x1=1, x2=0.5 in the fourth region. In this region, all 

actions are selected. Selection of three or more 

behaviors requires the behavior switching hyper plane 

with three or more dimensions.  

 

V. DISCUSSION AND FUTURE CASE STUDIES OF 

APPLICATION SCENARIOS 

The studies introduced in this paper have been 

realized as part of an on-going research, which aims to 

develop a computational framework of brain model; 

and artificial emotion based cognitive architecture to 

be utilized in the humanoid robots for the social and 

rehabilitation purposes such as assisting sign language 

tutoring due to the incompetency of 2-D instructional 

tools developed for this goal and the lack of sufficient 

educational material [1]. 

 

In the proposed system, it is intended that a child-

sized humanoid robot performs and recognizes various 

elementary signs (currently basic upper torso gestures 

and words from Sign Languages (SL)) so as to assist 

teaching these signs to children with communication 

problems [9]. This will be achieved through 

interaction games based on non-verbal 

communication, turn-taking and imitation designed 

specifically for robot and child to play together. In the 

first versions of the game, the robot was telling a short 

story verbally and through the story for some selected 

words, the robot was able to express words in the SL 

among a set of chosen words using hand movements, 

body and face gestures and having comprehended the 

word, the child was encouraged to give relevant 

feedback in SL or visually to the robot (using a 

colored card visualizing the word), according to the 

context of the game. The proposed game is based on 

the visual cards, the cards will be shown to the robot 

to select among several signs from American Sign 

Language (ASL) and Turkish Sign Language (TSL) 

and basic upper torso motion (hands side, forward, up 

etc.) Then, the robot performs the sign and waits for 

the child to imitate [9]. The imitated action is 

evaluated using an RGB-D camera (Kinect) and the 

robot will give a motivating comment, when the action 

is imitated with success [1]. 

 

 
Figure 8. Interaction game play based on SL [1]. 

 

The game (Figure 8) is designed for children with 

special needs in teaching non-verbal communication 

skills, imitation and turn-taking [9].  The sign 

language versions of the game were conducted with 

adults, sign language students, children with normal 

development, and hearing impaired children with 

success [1]. We are accepted for a special school for 

children with special needs for a long term study and 

will test the game in this school with both autistic and 

hearing impaired children, shortly. The main aim of 

this interdisciplinary study is to build a bridge 

between the technical know-how and robotic hardware 

with the know-how from different disciplines to 

produce useful solutions for children with 

communication problems [1][9]. 

 

Another alternative scenario summarizes the attempt 

to extend this study to autistic children. This paper 

presents one of the projects, which is produced as an 

output of this collaboration, and it is planned to use 

the system and the game in the collaborative special 

schools on autism.  Many such children show interest 

in robots and find them engaging. Robots can facilitate 

interaction between the child and teacher. Every child 

with autism has different needs. Robot behavior needs 

to be changed to accommodate individual children's 

needs and as each individual child makes progress. 

 

VI. CONCLUSIONS 

In this paper, we designed a brain inspired cognitive 

architecture embedded into a humanoid robot NAO 
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H25. As a nonlinear dynamic model, the major 

novelty in our paper is using Cellular Neural Network 

to enhance the representation of the input-output 

topology of the system. Also in this model, an 

adaptation procedure is applied on some cortical units 

(e.g. Sensory Cortex, Orbitofrontal Cortex and 

Amygdala). In this way, internal states of these units 

are converged to some specific points. The adaptation 

procedure allows the learning of the decision 

boundary for behavior selection. The interaction game 

play was simulated and tested in the MATLAB 

environment so that the system was demonstrated with 

robot and preschool children from Special School for 

Hearing Impaired Children. Finally results are 

observed to check the system performance. Also gain 

adaptation results on the sensory cortex, orbitofrontal 

cortex and amygdala are observed. In the future, 

American (ASL) and Turkish (TSL) sign languages 

will be implemented and tested. 
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